Câu hỏi:

03/02/2023 203

Phương trình \[\sqrt 3 \sin 2x - cox2x + 1 = 0\] có tất cả các nghiệm là:

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án B

Phương pháp:

Chia cả 2 vế cho 2 sau đó đưa phương trình về dạng cơ bản.

Cách giải:

Chia cả 2 vế của phương trình cho \[\sqrt {{{\left( {\sqrt 3 } \right)}^2} + {{\left( { - 1} \right)}^2}} = 2\] ta được:

\[\sqrt 3 \sin 2x - \cos 2x + 1 = 0 \Leftrightarrow \frac{{\sqrt 3 }}{2}\sin 2x - \frac{1}{2}\cos 2x + \frac{1}{2} = 0\]

\[ \Leftrightarrow \sin 2x\cos \frac{\pi }{6} - \cos 2x\sin \frac{\pi }{6} = - \frac{1}{2} \Leftrightarrow \sin \left( {2x - \frac{\pi }{6}} \right) = \sin \left( { - \frac{\pi }{6}} \right)\]

\[ \Leftrightarrow \left[ \begin{array}{l}2x - \frac{\pi }{6} = - \frac{\pi }{6} + k2\pi \\2x - \frac{\pi }{6} = \frac{{7\pi }}{6} + k2\pi \end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = k\pi \\x = \frac{{2\pi }}{3} + k\pi \end{array} \right.\left( {k \in \mathbb{Z}} \right).\]

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án B

Phương pháp:

Sử dụng tổ hợp và quy tắc nhân.

Cách giải:

Số cách chọn ra 2 viên bi xanh là: \[C_6^2.\]

Số cách chọn ra 2 viên bi đỏ là: \[C_4^1.\]

Số cách chọn từ hộp đó ra 3 viên bi gồm 2 viên bi xanh và 1 viên bi đỏ là \[C_6^2.C_4^1 = 60.\]

Câu 2

Lời giải

Đáp án A

Phương pháp:

A, B là hai biến cố độc lập thì \[P\left( {A.B} \right) = P\left( A \right).P\left( B \right).\]

Cách giải:

A, B là hai biến cố độc lập thì \[P\left( {A.B} \right) = P\left( A \right).P\left( B \right) = \frac{1}{2}.\frac{1}{4} = \frac{1}{8}.\]

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP