Câu hỏi:

19/08/2025 1,007 Lưu

Sau vòng đấu bảng AFF CUP 2018, một tờ báo tại khu vực đã bình chọn đội hình tiêu biểu gồm 11 cầu thủ, trong đó, các đội tuyển Việt Nam, Malaysia, Thái Lan, Philippines mỗi đội có 2 cầu thủ, các đội tuyển Singapore, Myanmar, Indonesia mỗi đội có 1 cầu thủ. Tại buổi họp báo trước khi vào vòng đấu loại trực tiếp, ban tổ chức chọn ngẫu nhiên 5 cầu thủ trong đội hình tiêu biểu giao lưu cùng khán giả. Tính xác suất để 5 cầu thủ được chọn đến từ 5 đội tuyển khác nhau.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Phương pháp:

Chia thành các TH sau:

TH1: 2 cầu thủ của 2 đội nhóm 1 + 3 cầu thủ của 3 đội nhóm 2.

TH2: 3 cầu thủ của 3 đội nhóm 1 + 2 cầu thủ của 2 đội nhóm 2.

TH3: 4 cầu thủ của 4 đội nhóm 1 + 1 cầu thủ của 1 đội nhóm 2.

Cách giải:

Nhóm 1: {Việt Nam, Malaysia, Thái Lan, Philippines}.

Nhóm 2: {Singapore, Myanmar, Indonesia}.

Chọn 5 cầu thủ bất kì từ 11 cầu thủ \[ \Rightarrow n\left( \Omega \right) = C_{11}^5 = 462.\]

Gọi A là biến cố: “5 cầu thủ được chọn đến từ 5 đội tuyển khác nhau”.

TH1: 2 cầu thủ của 2 đội nhóm 1 + 3 cầu thủ của 3 đội nhóm 2.

\[ \Rightarrow \]\[C_4^2.C_2^1.C_2^1.C_3^3 = 24\] cách.

TH2: 3 cầu thủ của 3 đội nhóm 1 + 2 cầu thủ của 2 đội nhóm 2.

\[ \Rightarrow \]\[C_4^3.C_2^1.C_2^1.C_2^1.C_3^2 = 96\] cách.

TH3: 4 cầu thủ của 4 đội nhóm 1 + 1 cầu thủ của 1 đội nhóm 2.

\[ \Rightarrow \]\[{\left( {C_2^1} \right)^4}.C_3^1 = 48\] cách.

\[ \Rightarrow n\left( A \right) = 24 + 96 + 48 = 168.\]

Vậy \[P\left( A \right) = \frac{{n\left( A \right)}}{{n\left( \Omega \right)}} = \frac{{168}}{{462}} = \frac{4}{{11}}.\]

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án B

Phương pháp:

Sử dụng tổ hợp và quy tắc nhân.

Cách giải:

Số cách chọn ra 2 viên bi xanh là: \[C_6^2.\]

Số cách chọn ra 2 viên bi đỏ là: \[C_4^1.\]

Số cách chọn từ hộp đó ra 3 viên bi gồm 2 viên bi xanh và 1 viên bi đỏ là \[C_6^2.C_4^1 = 60.\]

Lời giải

Phương pháp:

a) Xác định giao tuyến dựa vào yếu tố song song.

b) Chọn \[SC \subset \left( {SAC} \right),\] xác định giao tuyến \[\Delta = \left( {AMN} \right) \cap \left( {SAC} \right).\] Khi đó giao điểm của SC\[\left( {AMN} \right)\] chính là giao điểm của SC\[\Delta .\]

c) \[d||a \subset \left( P \right) \Rightarrow d||\left( P \right).\]

Cách giải:

Media VietJack

a) Xét \[\left( {SAB} \right)\]\[\left( {SCD} \right)\] có:

+ S là điểm chung thứ nhất.

+ \[\left\{ \begin{array}{l}\left( {SAB} \right) \supset AB\\\left( {SCD} \right) \supset CD\\AB||CD{\rm{ }}\left( {gt} \right)\end{array} \right. \Rightarrow \]Giao tuyến của \[\left( {SAB} \right),{\rm{ }}\left( {SCD} \right)\] là đường thẳng đi qua S và song song với AB, CD.

Trong \[\left( {SAB} \right)\] kẻ đường thẳng d đi qua S\[d||AB||CD.\]

Vậy \[d = \left( {SAB} \right) \cap \left( {SCD} \right).\]

b) Chọn \[SC \subset \left( {SAC} \right),\] tìm giao tuyến của \[\left( {SAC} \right)\]\[\left( {AMN} \right).\]

+ A là điểm chung thứ nhất.

+ Trong \[\left( {SBD} \right)\] gọi \[I = MN \cap SO\] ta có: \[I \in SO \subset \left( {SAC} \right) \Rightarrow I \in \left( {SAC} \right).\]

Trong \[\left( {SAC} \right)\] gọi \[E = AI \cap SC\] ta có:

\[\left\{ \begin{array}{l}E \in AI \subset \left( {AMN} \right) \Rightarrow E \in \left( {AMN} \right)\\E \in SC\end{array} \right. \Rightarrow E = SC \cap \left( {AMN} \right).\]

c) Gọi K là trung điểm của SC.

G là trọng tâm tam giác SBC \[ \Rightarrow G \in BK\]\[\frac{{BG}}{{BK}} = \frac{2}{3}\] (Tính chất trọng tâm).

Do \[AB||CD{\rm{ }}\left( {gt} \right),\] áp dụng định lí Ta-lét ta có: \[\frac{{BO}}{{OD}} = \frac{{AB}}{{CD}} = 2 \Rightarrow \frac{{BO}}{{BD}} = \frac{2}{3}.\]

\[ \Rightarrow \frac{{BG}}{{BK}} = \frac{{BO}}{{BD}} = \frac{2}{3} \Rightarrow OG||DK\] (Định lí Ta-lét đảo).

\[DK \subset \left( {SCD} \right).\] Vậy \[OG||\left( {SCD} \right).\]

Câu 3

A. \[P\left( {A.B} \right) = \frac{1}{8}\]
B. \[P\left( {A.B} \right) = \frac{3}{4}\]
C. \[P\left( {A.B} \right) = \frac{1}{4}\]
D. \[P\left( {A.B} \right) = \frac{7}{8}\]

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

A. \[D = \mathbb{R}\backslash \left\{ {k\pi ,k \in \mathbb{Z}} \right\}\]
B. \[D = \mathbb{R}\backslash \left\{ {\frac{\pi }{2} + k2\pi ,k \in \mathbb{Z}} \right\}\]
C. \[D = \mathbb{R}\]
D. \[D = \mathbb{R}\backslash \left\{ {\frac{\pi }{2} + k\pi ,k \in \mathbb{Z}} \right\}\]

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. \[BD||\left( {MNK} \right)\]
B. \[SB||\left( {MNK} \right)\]
C. \[SC||\left( {MNK} \right)\]
D. \[SD||\left( {MNK} \right)\]

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP