Câu hỏi:

11/07/2024 721

Sau vòng đấu bảng AFF CUP 2018, một tờ báo tại khu vực đã bình chọn đội hình tiêu biểu gồm 11 cầu thủ, trong đó, các đội tuyển Việt Nam, Malaysia, Thái Lan, Philippines mỗi đội có 2 cầu thủ, các đội tuyển Singapore, Myanmar, Indonesia mỗi đội có 1 cầu thủ. Tại buổi họp báo trước khi vào vòng đấu loại trực tiếp, ban tổ chức chọn ngẫu nhiên 5 cầu thủ trong đội hình tiêu biểu giao lưu cùng khán giả. Tính xác suất để 5 cầu thủ được chọn đến từ 5 đội tuyển khác nhau.

Sách mới 2k7: 30 đề đánh giá năng lực DHQG Hà Nội, Tp. Hồ Chí Minh, BKHN 2025 mới nhất (chỉ từ 110k).

Mua bộ đề Hà Nội Mua bộ đề Tp. Hồ Chí Minh Mua đề Bách Khoa

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Phương pháp:

Chia thành các TH sau:

TH1: 2 cầu thủ của 2 đội nhóm 1 + 3 cầu thủ của 3 đội nhóm 2.

TH2: 3 cầu thủ của 3 đội nhóm 1 + 2 cầu thủ của 2 đội nhóm 2.

TH3: 4 cầu thủ của 4 đội nhóm 1 + 1 cầu thủ của 1 đội nhóm 2.

Cách giải:

Nhóm 1: {Việt Nam, Malaysia, Thái Lan, Philippines}.

Nhóm 2: {Singapore, Myanmar, Indonesia}.

Chọn 5 cầu thủ bất kì từ 11 cầu thủ \[ \Rightarrow n\left( \Omega \right) = C_{11}^5 = 462.\]

Gọi A là biến cố: “5 cầu thủ được chọn đến từ 5 đội tuyển khác nhau”.

TH1: 2 cầu thủ của 2 đội nhóm 1 + 3 cầu thủ của 3 đội nhóm 2.

\[ \Rightarrow \]\[C_4^2.C_2^1.C_2^1.C_3^3 = 24\] cách.

TH2: 3 cầu thủ của 3 đội nhóm 1 + 2 cầu thủ của 2 đội nhóm 2.

\[ \Rightarrow \]\[C_4^3.C_2^1.C_2^1.C_2^1.C_3^2 = 96\] cách.

TH3: 4 cầu thủ của 4 đội nhóm 1 + 1 cầu thủ của 1 đội nhóm 2.

\[ \Rightarrow \]\[{\left( {C_2^1} \right)^4}.C_3^1 = 48\] cách.

\[ \Rightarrow n\left( A \right) = 24 + 96 + 48 = 168.\]

Vậy \[P\left( A \right) = \frac{{n\left( A \right)}}{{n\left( \Omega \right)}} = \frac{{168}}{{462}} = \frac{4}{{11}}.\]

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Một hộp đựng 10 viên bi khác nhau, trong đó có 6 viên bi xanh và 4 viên bi đỏ. Có bao nhiêu cách chọn từ hộp đó ra 3 viên bi gồm 2 viên bi xanh và 1 viên bi đỏ?

Xem đáp án » 03/02/2023 4,705

Câu 2:

Cho hình chóp S.ABCD có đáy ABCD là hình thang, biết AB song song với CD\[AB = 2CD,\] O là giao điểm của ACBD. Gọi M, N là trung điểm của SB SD.

a) Xác định giao tuyến của hai mặt phẳng \[\left( {SAB} \right)\]\[\left( {SCD} \right).\]

b) Xác định giao điểm của SC\[\left( {AMN} \right).\]

c) Gọi G là trọng tâm \[\Delta SBC.\] Chứng minh rằng OG song song với mặt phẳng \[\left( {SCD} \right).\]

Xem đáp án » 13/07/2024 3,687

Câu 3:

Tìm tập xác định D của hàm số \[y = \tan x?\]

Xem đáp án » 03/02/2023 3,547

Câu 4:

Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Gọi M, N, K lần lượt là trung điểm của CD, CB, SA. Mệnh đề nào sau đây đúng?

Xem đáp án » 03/02/2023 3,213

Câu 5:

Khẳng định nào sau đây đúng?

Xem đáp án » 03/02/2023 1,794

Câu 6:

Phương trình \[\cos x = \frac{1}{3}\] có bao nhiêu nghiệm trong khoảng \[\left( {0;2\pi } \right)?\]

Xem đáp án » 03/02/2023 1,641

Câu 7:

Từ các chữ số 0, 1, 2, 3, 4, 5, 6, 7 lập được bao nhiêu số tự nhiên có 3 chữ số đôi một khác nhau và số đó chia hết cho 5?

Xem đáp án » 03/02/2023 1,050

Bình luận


Bình luận
Vietjack official store