Câu hỏi:

04/02/2023 497

Tổng tất cả các nghiệm \(x \in \left[ {0;10\pi } \right]\) của phương trình \(\sin x = 0\) là:

Đáp án chính xác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

 Đáp án A

Phương pháp:

+) Giải phương trình lượng giác cơ bản: \(\sin x = \sin \alpha \Leftrightarrow \left[ \begin{array}{l}x = \alpha + k2\pi \\x = \pi - \alpha + k2\pi \end{array} \right.\left( {k \in Z} \right),\) sau đó tìm các nghiệm thuộc \(\left[ {0;10\pi } \right]\) của phương trình.

+) Tính tổng các nghiệm, sử dụng công thức tổng n số hạng đầu tiên của CSC: \({S_n} = \frac{{\left( {{u_1} + {u_n}} \right).n}}{2}.\)

Cách giải:

\(\sin x = 0 \Leftrightarrow x = k\pi \left( {k \in Z} \right)\)

\(x \in \left[ {0;10\pi } \right] \Leftrightarrow 0 \le k\pi \le 10\pi \Leftrightarrow 0 \le k \le 10 \Leftrightarrow k \in \left\{ {0;1;2;...;10} \right\}\)

Khi đó tổng các nghiệm thuộc \(\left[ {0;10\pi } \right]\) của phương trình trên là:

\(0 + \pi + 2\pi + 3\pi + ... + 10\pi = \left( {0 + 1 + 2 + ... + 10} \right)\pi = \frac{{10.11}}{2}\pi = 55\pi .\)

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình bình hành. Gọi M, N lần lượt là trung điểm của SA, SB, P là trọng tâm của tam giác BCD.

1. Chứng minh rằng: Đường thẳng MN song song với mặt phẳng \(\left( {SCD} \right).\)

2. Tìm giao tuyến của mp\(\left( {MNP} \right)\) và mp\(\left( {ABCD} \right)\).

3. Tìm giao điểm G của đường thẳng SC và mp\(\left( {MNP} \right).\) Tính tỷ số \(\frac{{SC}}{{SG}}.\)

Xem đáp án » 13/07/2024 3,163

Câu 2:

Nghiệm của phương trình \(\cot x = \cot 2x\) là:

Xem đáp án » 04/02/2023 2,364

Câu 3:

Điều kiện cần và đủ của tham số m để phương trình \(\cos x = {\left( {m - 1} \right)^2}\) có nghiệm là:

Xem đáp án » 04/02/2023 1,911

Câu 4:

Giải các phương trình lượng giác sau:

1. \({\sin ^2}x + 5\sin x\cos x + 6{\cos ^2}x = 6\)

2. \(\sqrt 3 \sin x + \cos x = 2\)

3. \(\cos 3x - \sin 2x - \cos x = 0\)

Xem đáp án » 13/07/2024 1,690

Câu 5:

Chu kỳ của hàm số \(y = f\left( x \right) = \tan \frac{x}{4}\) là:

Xem đáp án » 04/02/2023 1,094

Câu 6:

Số nghiệm \(x \in \left[ {0;2\pi } \right]\) của phương trình \(\sin x = \frac{{\sqrt 2 }}{2}\) là:

Xem đáp án » 04/02/2023 641

Câu 7:

Từ các chữ số 0; 1; 2; 3; 4; 5; 6; 7 lập được bao nhiêu số tự nhiên có 6 chữ số, các chữ số đều khác nhau và số đó lớn hơn 540000?

Xem đáp án » 11/07/2024 633
Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua