Câu hỏi:
04/02/2023 238Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Đáp án A
Phương pháp:
+) Chọn 3 người trong số 6 người để trao huy chương.
+) Hoán đổi vị trí của 3 người nhận huy chương.
Cách giải:
Số cách trao một bộ huy chương gồm 1 huy chương vàng, 1 huy chương bạc và 1 huy chương đồng là \(A_6^3 = 120\) cách.
Chú ý: Vị trí của 3 nhận huy chương có thể hoán đổi cho nhau, hay nói cách khác vai trò của 3 huy chương khác nhau nên bài toán này phải dùng chỉnh hợp, dùng tổ hợp là sai.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình bình hành. Gọi M, N lần lượt là trung điểm của SA, SB, P là trọng tâm của tam giác BCD.
1. Chứng minh rằng: Đường thẳng MN song song với mặt phẳng \(\left( {SCD} \right).\)
2. Tìm giao tuyến của mp\(\left( {MNP} \right)\) và mp\(\left( {ABCD} \right)\).
3. Tìm giao điểm G của đường thẳng SC và mp\(\left( {MNP} \right).\) Tính tỷ số \(\frac{{SC}}{{SG}}.\)
Câu 3:
Câu 4:
Giải các phương trình lượng giác sau:
1. \({\sin ^2}x + 5\sin x\cos x + 6{\cos ^2}x = 6\)
2. \(\sqrt 3 \sin x + \cos x = 2\)
3. \(\cos 3x - \sin 2x - \cos x = 0\)
Câu 5:
Câu 6:
Câu 7:
về câu hỏi!