Câu hỏi:
07/02/2023 106Cho hàm số , (m là tham số thực). Tìm m để hàm số có cực đại, cực tiểu và ba điểm cực trị của đồ thị hàm số là ba đỉnh của một tam giác có bán kính đường tròn nội tiếp lớn hơn 1.
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Ta có .
Hàm số có cực trị khi và chỉ khi phương trình có ba nghiệm phân biệt, điều này tương đương với m>0.
Khi đó tọa độ các điểm cực trị là .
Tam giác ABC cân tại A và gọi H là trung điểm của BC thì và do đó .
Ta có .
Suy ra .
.
Kết hợp với điều kiện suy ra .
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Câu 2:
Cho hàm số xác định trên đoạn và đồng biến trên khoảng . Mệnh đề nào dưới đây đúng?
Câu 4:
Cho hàm số xác định, liên tục trên R và có bảng biến thiên như sau:
Khẳng định nào sau đây đúng?
Câu 5:
Cho đồ thị hàm số y=f(x) có đồ thị như hình vẽ. Hàm số y=f(x) đồng biến trên khoảng nào dưới đây?
Câu 6:
Câu 7:
Cho hàm số . Gọi M và m lần lượt là GTLN và GTNN của hàm số trên đoạn thì bằng:
về câu hỏi!