Gọi cạnh của hình vuông \(ABCD\) là \(x\). Khi đó, độ dài đường chéo hình vuông là \(x\sqrt 2 \). Theo giả thiết ta được \(x\sqrt 2 = a\sqrt 2 \Rightarrow x = a\).
Thể tích khối chóp \(S.ABCD\) là: \(V = \frac{1}{3}.{S_{ABCD}}.SA = \frac{1}{3}{a^2}.a\sqrt 3 = \frac{{{a^3}\sqrt 3 }}{3}\).
Cho hình chóp \(S.ABC\) có đáy là tam giác vuông tại \(B\). Biết \(\Delta SAB\) là tam giác đều và thuộc mặt phẳng vuông góc với mặt phẳng \(\left( {ABC} \right)\). Biết \(AB = a\), \(AC = a\sqrt 3 \). Thể tích khối chóp \(S.ABC\) là:
Cho hình chóp \(S.ABCD\) có \(SA\) vuông góc với \(\left( {ABCD} \right)\), đáy \(ABCD\) là hình vuông cạnh \(a\) và \(SA = 6a\). Thể tích khối chóp \(S.ABCD\) bằng
về câu hỏi!