Câu hỏi:

09/02/2023 186 Lưu

Số tiệm cận đứng và tiệm cận ngang của đồ thị hàm số \(y = \frac{2}{{\sqrt {{x^2} - 4} }}\) bằng

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack
Lời giải
Chọn C
Tập xác định \(D = \left( { - \infty ; - 2} \right) \cup \left( {2; + \infty } \right)\).
Ta có
\(\mathop {lim}\limits_{x \to \pm \infty } y = \mathop {lim}\limits_{x \to \pm \infty } \frac{2}{{\sqrt {{x^2} - 4} }} = 0 \Rightarrow y = 0\) là tiệm cận ngang.
\(\mathop {lim}\limits_{x \to - {2^ - }} y = \mathop {lim}\limits_{x \to - {2^ - }} \frac{2}{{\sqrt {{x^2} - 4} }} = + \infty \Rightarrow x = - 2\) là tiệm cận đứng.
\(\mathop {lim}\limits_{x \to {2^ + }} y = \mathop {lim}\limits_{x \to {2^ + }} \frac{2}{{\sqrt {{x^2} - 4} }} = + \infty \Rightarrow x = 2\) là tiệm cận đứng.
Vậy số tiệm cận đứng và tiệm cận ngang của đồ thị hàm số là \(3\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Lời giải
Chọn C
Hàm số đã cho liên tục và đơn điệu trên đoạn \(\left[ {1;2} \right]\). Khi đó, hàm số đạt giá trị lớn nhất và giá trị nhỏ nhất lần lượt tại \(x = 1\)\(x = 2\) hoặc ngược lại.
Tổng giá trị lớn nhất và giá trị nhỏ nhất của hàm số là: \(y\left( 1 \right) + y\left( 2 \right) = 8 \Leftrightarrow \frac{{m + 1}}{2} + \frac{{m + 2}}{3} = 8 \Leftrightarrow m = \frac{{41}}{5}.\)

Câu 2

Lời giải

Lời giải
Chọn C
Ta có \(g'\left( x \right) = f'\left( x \right) - x - 3 = f'\left( x \right) - \left( {x + 3} \right)\).
Khi đó: \(g'\left( x \right) = 0 \Leftrightarrow f'\left( x \right) - \left( {x + 3} \right) = 0\)\( \Leftrightarrow f'\left( x \right) = \left( {x + 3} \right)\)\( \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{x = - 2}\\{x = 0{\rm{ }}}\\{x = 2{\rm{ }}}\end{array}} \right.\).
Lập Bảng biến thiên

Media VietJack

Dựa vào bảng biến thiên, ta thấy hàm số \(g\left( x \right)\) đồng biến trên khoảng \(\left( {2; + \infty } \right)\) nên suy ra được \(g\left( 2 \right) < g\left( 4 \right)\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP