Câu hỏi:

09/02/2023 474 Lưu

Cho hàm số \[y = f\left( x \right)\] liên tục trên \[\mathbb{R}\backslash \left\{ 1 \right\}\] và có bảng biến thiên như sau:

Media VietJack

Tìm số đường tiệm cận đứng và tiệm cận ngang của đồ thị hàm số \[y = g\left( x \right) = \frac{1}{{2f\left( x \right) - 3}}\].

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack
Lời giải
Chọn B
\[\mathop {\lim }\limits_{x \to + \infty } y = \mathop {\lim }\limits_{x \to + \infty } \frac{1}{{2f\left( x \right) - 3}} = 0\]
\[ \Rightarrow \] Đồ thị hàm số \[y = g\left( x \right)\] có tiệm cận ngang là đường thẳng \[y = 0\].
\[\mathop {\lim }\limits_{x \to - \infty } y = \mathop {\lim }\limits_{x \to - \infty } \frac{1}{{2f\left( x \right) - 3}} = 0\]
\[ \Rightarrow \] Đồ thị hàm số \[y = g\left( x \right)\] có tiệm cận ngang là đường thẳng \[y = 0\].
Số tiệm cận đứng của đồ thị hàm số \[y = g\left( x \right)\] chính là số nghiệm của phương trình \[2f\left( x \right) = 3\].
Số nghiệm của phương trình \[2f\left( x \right) = 3\] chính là số giao điểm của đồ thị hàm số \[y = g\left( x \right)\] và đường thẳng \[y = \frac{3}{2}\].
Từ bảng biến thiên, ta thấy đường thẳng \[y = \frac{3}{2}\] cắt đồ thị hàm số \[y = g\left( x \right)\] tại đúng \[2\] điểm phân biệt, một điểm có hoành độ thuộc \[\left( {1;2} \right)\], điểm còn lại có hoành độ thuộc \[\left( {2; + \infty } \right)\].
Vậy đồ thị hàm số \[y = g\left( x \right)\]\[1\] tiệm cận ngang và \[2\] tiệm cận đứng.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Lời giải
Chọn C
Hàm số đã cho liên tục và đơn điệu trên đoạn \(\left[ {1;2} \right]\). Khi đó, hàm số đạt giá trị lớn nhất và giá trị nhỏ nhất lần lượt tại \(x = 1\)\(x = 2\) hoặc ngược lại.
Tổng giá trị lớn nhất và giá trị nhỏ nhất của hàm số là: \(y\left( 1 \right) + y\left( 2 \right) = 8 \Leftrightarrow \frac{{m + 1}}{2} + \frac{{m + 2}}{3} = 8 \Leftrightarrow m = \frac{{41}}{5}.\)

Câu 2

Lời giải

Lời giải
Chọn C
Ta có \(g'\left( x \right) = f'\left( x \right) - x - 3 = f'\left( x \right) - \left( {x + 3} \right)\).
Khi đó: \(g'\left( x \right) = 0 \Leftrightarrow f'\left( x \right) - \left( {x + 3} \right) = 0\)\( \Leftrightarrow f'\left( x \right) = \left( {x + 3} \right)\)\( \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{x = - 2}\\{x = 0{\rm{ }}}\\{x = 2{\rm{ }}}\end{array}} \right.\).
Lập Bảng biến thiên

Media VietJack

Dựa vào bảng biến thiên, ta thấy hàm số \(g\left( x \right)\) đồng biến trên khoảng \(\left( {2; + \infty } \right)\) nên suy ra được \(g\left( 2 \right) < g\left( 4 \right)\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP