Câu hỏi:

09/02/2023 204 Lưu

Cho hàm số \(f\left( x \right) = {x^3} - 3x + 1\). Tìm số nghiệm của phương trình \(f\left( {f\left( x \right)} \right) = 0\).

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack
Lời giải
Chọn D
Xét phương trình \(f\left( x \right) = 0 \Leftrightarrow {x^3} - 3x + 1 = 0\) dùng máy tính cầm tay ta ước lượng được phương trình có ba nghiệm và \(\left[ \begin{array}{l}{x_1} \approx - 1,879\\{x_2} \approx 1,532\\{x_3} \approx 0,347\end{array} \right.\).
Xét hàm số \(f\left( x \right) = {x^3} - 3x + 1\), ta có bảng biến thiên của \(f\left( x \right)\) như sau:

Media VietJack

Xét phương trình \(f\left( {f\left( x \right)} \right) = 0\;\left( 1 \right)\) ta ước lượng được \(\left[ \begin{array}{l}f\left( x \right) \approx - 1,879\\f\left( x \right) \approx 1,532\\f\left( x \right) \approx 0,347\end{array} \right.\).
Dựa vào bảng biến thiên của hàm số \(f\left( x \right)\) ta có:
+ Với \(f\left( x \right) \approx - 1,879\) phương trình \(\left( 1 \right)\)\(1\) nghiệm.
+ Với \(f\left( x \right) \approx 1,532\) phương trình \(\left( 1 \right)\)\(3\) nghiệm.
+ Với \(f\left( x \right) \approx 0,347\)phương trình \(\left( 1 \right)\)\(3\) nghiệm.
Vậy phương trình đã cho có \(7\) nghiệm.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Lời giải
Chọn C
Hàm số đã cho liên tục và đơn điệu trên đoạn \(\left[ {1;2} \right]\). Khi đó, hàm số đạt giá trị lớn nhất và giá trị nhỏ nhất lần lượt tại \(x = 1\)\(x = 2\) hoặc ngược lại.
Tổng giá trị lớn nhất và giá trị nhỏ nhất của hàm số là: \(y\left( 1 \right) + y\left( 2 \right) = 8 \Leftrightarrow \frac{{m + 1}}{2} + \frac{{m + 2}}{3} = 8 \Leftrightarrow m = \frac{{41}}{5}.\)

Câu 2

Lời giải

Lời giải
Chọn C
Ta có \(g'\left( x \right) = f'\left( x \right) - x - 3 = f'\left( x \right) - \left( {x + 3} \right)\).
Khi đó: \(g'\left( x \right) = 0 \Leftrightarrow f'\left( x \right) - \left( {x + 3} \right) = 0\)\( \Leftrightarrow f'\left( x \right) = \left( {x + 3} \right)\)\( \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{x = - 2}\\{x = 0{\rm{ }}}\\{x = 2{\rm{ }}}\end{array}} \right.\).
Lập Bảng biến thiên

Media VietJack

Dựa vào bảng biến thiên, ta thấy hàm số \(g\left( x \right)\) đồng biến trên khoảng \(\left( {2; + \infty } \right)\) nên suy ra được \(g\left( 2 \right) < g\left( 4 \right)\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP