Câu hỏi:

09/02/2023 439 Lưu

Cho lăng trụ tam giác đều \(ABC \cdot A'B'C'\). Tam giác \(ABC'\)có diện tích bằng \(8\)và hợp với mặt phẳng đáy một góc có số đo \({30^^\circ }\). Tính thể tích của khối lăng trụ.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack
Lời giải
Chọn A

Media VietJack

Gọi \(I\)là trung điểm của \(AB\), ta có \(\left\{ {\begin{array}{*{20}{l}}{AB \bot CI}\\{AB \bot CC'}\end{array} \Rightarrow AB \bot \left( {CIC'} \right)} \right.\).
Ta có \(\left\{ {\begin{array}{*{20}{l}}{AB = \left( {ABC} \right) \cap \left( {ABC'} \right)}\\{AB \bot \left( {CIC'} \right)}\\{\left( {CIC'} \right) \cap \left( {ABC} \right) = CI}\\{\left( {CIC'} \right) \cap \left( {ABC'} \right) = C'}\end{array}} \right.\) \( \Rightarrow \left( {\overline {\left( {ABC} \right),\left( {ABC'} \right)} } \right) = \left( {\widehat {CI,C'I}} \right) = \widehat {C'IC} = {30^^\circ }\).
Đặt \(AB = x(x > 0)\).
Vì \(CI\)là đường cao của tam giác đều \(ABC\)nên \(CI = \frac{{x\sqrt 3 }}{2}\).
+) \(CC' = CI \cdot {\rm{tan}}{30^^\circ } = \frac{{x\sqrt 3 }}{2} \cdot \frac{{\sqrt 3 }}{3} = \frac{x}{2}\)\(C'I = \frac{{CI}}{{{\rm{cos}}{{30}^^\circ }}} = x\).
Diện tích tam giác \(ABC'\) là \({S_{ABC'}} = \frac{1}{2}AB \cdot C'I \Leftrightarrow 8 = \frac{1}{2}{x^2} \Leftrightarrow x = 4\).
Thể tích khối lăng trụ đã cho là \(V = {S_{AQC}} \cdot CC' = \frac{{{x^2}\sqrt 3 }}{4} \cdot \frac{{x\sqrt 3 }}{2} \cdot {\rm{tan}}{30^^\circ } = \frac{{3{x^3}}}{8} \cdot \frac{{\sqrt 3 }}{3} = \frac{{{x^3}\sqrt 3 }}{8} = \frac{{{4^3}\sqrt 3 }}{8} = 8\sqrt 3 \).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Lời giải
Chọn C
Hàm số đã cho liên tục và đơn điệu trên đoạn \(\left[ {1;2} \right]\). Khi đó, hàm số đạt giá trị lớn nhất và giá trị nhỏ nhất lần lượt tại \(x = 1\)\(x = 2\) hoặc ngược lại.
Tổng giá trị lớn nhất và giá trị nhỏ nhất của hàm số là: \(y\left( 1 \right) + y\left( 2 \right) = 8 \Leftrightarrow \frac{{m + 1}}{2} + \frac{{m + 2}}{3} = 8 \Leftrightarrow m = \frac{{41}}{5}.\)

Câu 2

Lời giải

Lời giải
Chọn C
Ta có \(g'\left( x \right) = f'\left( x \right) - x - 3 = f'\left( x \right) - \left( {x + 3} \right)\).
Khi đó: \(g'\left( x \right) = 0 \Leftrightarrow f'\left( x \right) - \left( {x + 3} \right) = 0\)\( \Leftrightarrow f'\left( x \right) = \left( {x + 3} \right)\)\( \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{x = - 2}\\{x = 0{\rm{ }}}\\{x = 2{\rm{ }}}\end{array}} \right.\).
Lập Bảng biến thiên

Media VietJack

Dựa vào bảng biến thiên, ta thấy hàm số \(g\left( x \right)\) đồng biến trên khoảng \(\left( {2; + \infty } \right)\) nên suy ra được \(g\left( 2 \right) < g\left( 4 \right)\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP