Câu hỏi:

11/02/2023 1,087

Tìm tất cả các giá trị thực của tham số \(m\) sao cho đồ thị của hàm số \(y = - {x^4} + 2\left( {m + 1} \right){x^2} - {m^2}\) có ba điểm cực trị tạo thành một tam giác vuông cân.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack
Lời giải
Cách 1: Ta có \(y' = - 4x\left( {{x^2} - m - 1} \right)\)
Xét \(y' = 0 \Leftrightarrow \left[ \begin{array}{l}x = 0\\{x^2} = m + 1\end{array} \right.\).
Đồ thị hàm số có ba điểm cực trị \( \Leftrightarrow \) \(m > - 1\) \(\left( * \right)\)
Tọa độ ba điểm cực trị là \(A\left( {0;\, - {m^2}} \right),\)\(B\left( {\sqrt {m + 1} ;\,2m + 1} \right),\)\(C\left( { - \sqrt {m + 1} ;\,2m + 1} \right)\)
Gọi \(H\) là trung điểm của đoạn thẳng \(BC\) thì \(H\left( {0;\,2m + 1} \right)\)
Ba điểm cực trị lập thành tam giác vuông cân khi và chỉ khi \(AH = \frac{{BC}}{2}\)\( \Leftrightarrow \sqrt {{{\left( {m + 1} \right)}^4}} = \sqrt {m + 1} \)\( \Leftrightarrow \left[ \begin{array}{l}m = 0\\m = - 1\end{array} \right.\).
So với điều kiện (*) thì \(m = 0\) thỏa mãn.
Cách 2: (Phương pháp trắc nghiệm)
Điều kiện để đồ thị hàm số trùng phương \(y = a{x^4} + b{x^2} + c\,,a \ne 0\) có ba điểm cực trị là \(ab < 0 \Leftrightarrow m > - 1\)
Khi đó ba điểm cực trị lập thành tam giác vuông cân khi \({b^3} + 8a = 0 \Leftrightarrow - 8{\left( {m + 1} \right)^3} + 8 = 0 \Leftrightarrow m = 0\).

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Lời giải
Ta có \(y = \frac{{x + 2}}{{x + 5m}}\,\,\left( {x \ne - 5m} \right)\), đạo hàm \(y' = \frac{{5m - 2}}{{{{\left( {x + 5m} \right)}^2}}}\).
Yêu cầu bài toán \( \Leftrightarrow \left\{ \begin{array}{l}y' > 0\\ - 5m \notin \left( { - \infty \,; - 10} \right)\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}5m - 2 > 0\\ - 5m \ge - 10\end{array} \right. \Leftrightarrow \frac{2}{5} < m \le 2\).
Do \(m \in \mathbb{Z}\), nên \(m \in \left\{ {1\,;2} \right\}\). Vậy có 2 giá trị nguyên của tham số \(m\) thoả mãn yêu cầu bài toán.

Lời giải

Lời giải
Gọi \[x,\;y\left( {\rm{m}} \right)\], \[\left( {x > 0,y > 0} \right)\] là chiều dài và chiều rộng của đáy bể.
Khi đó theo đề ta suy ra \[0,6xy = 0,096 \Leftrightarrow y = \frac{{0,16}}{x}\].
Giá thành của bể cá được xác định theo hàm số sau:
\[f\left( x \right) = 2.0,6\left( {x + \frac{{0,16}}{x}} \right).70000 + 100000.x.\frac{{0,16}}{x}\]
\[ \Leftrightarrow f\left( x \right) = 84000\left( {x + \frac{{0,16}}{x}} \right) + 16000\]
Ta có \[f'\left( x \right) = 84000\left( {1 - \frac{{0,16}}{{{x^2}}}} \right) \Rightarrow f'\left( x \right) = 0 \Leftrightarrow x = 0,4\]
Bảng biến thiên:

Media VietJack

Dựa vào bảng biến thiên suy ra chi phí thấp nhất để hoàn thành bể cá là \[f\left( {0,4} \right) = 83200\] VNĐ.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Cho các số thực \(x\), \(y\) thỏa mãn \({x^2} - xy + {y^2} = 2\). Tìm giá trị nhỏ nhất của biểu thức \(P = {x^2} + xy + {y^2}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Trên khoảng \(\left( { - \pi \,;\,\pi } \right)\) đồ thị hàm số \(y = \sin x\) được cho như hình vẽ:

Media VietJack

Hỏi hàm số \(y = \sin x\) nghịch biến trên khoảng nào sau đây?

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay