Câu hỏi:

11/02/2023 374

Cho hàm số \(y = \frac{{x - 1}}{{x + 1}}\) có đồ thị \(\left( C \right)\). Gọi \[\Delta \] là tiếp tuyến của \(\left( C \right)\) tại điểm \[M\] (có hoành độ dương) sao cho\[\Delta \] cùng với hai đường tiệm cận của \(\left( C \right)\) tạo thành tam giác có có chu vi nhỏ nhất.

Đáp án chính xác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack
Lời giải
Gọi \[M\] là tiếp điểm, ta có:\[M\left( {{x_0};\frac{{{x_0} - 1}}{{{x_0} + 1}}} \right)\].
Ta có:\[y' = \frac{2}{{{{\left( {x + 1} \right)}^2}}} \Rightarrow k = y'\left( {{x_0}} \right) = \frac{2}{{{{\left( {{x_0} + 1} \right)}^2}}}\]. Phương trình tiếp tuyến cần tìm là
\[\Delta :y = k\left( {x - {x_0}} \right) + {y_0} = \frac{{2\left( {x - {x_0}} \right) + x_0^2 - 1}}{{{{\left( {{x_0} + 1} \right)}^2}}}\]
Hai đường tiệm cận là \({d_1}:y = 1\) và \({d_2}:x = - 1\). Giao điểm của hai đường tiệm với tiếp tuyến là \[A\left( { - 1;\frac{{x_0^2 - 2{x_0} - 3}}{{{{\left( {{x_0} + 1} \right)}^2}}}} \right)\] và \[B\left( {2{x_0} + 1;1} \right)\]. Giao điểm hai đường tiệm cận là \(I\left( { - 1;1} \right)\).
Ta có \[\left\{ \begin{array}{l}IA = \frac{4}{{\left| {{x_0} + 1} \right|}}\\IB = 2\left| {{x_0} + 1} \right|\\AB = 4{\left( {{x_0} + 1} \right)^2} + \frac{{16}}{{{{\left( {{x_0} + 1} \right)}^2}}}\end{array} \right.\].
Chu vi là: \[IA + IB + AB = \frac{4}{{\left| {{x_0} + 1} \right|}} + 2\left| {{x_0} + 1} \right| + 4{\left( {{x_0} + 1} \right)^2} + \frac{{16}}{{{{\left( {{x_0} + 1} \right)}^2}}}\]
Theo BĐT Cauchy ta có
\[\begin{array}{l}\frac{4}{{\left| {{x_0} + 1} \right|}} + 2\left| {{x_0} + 1} \right| + 4{\left( {{x_0} + 1} \right)^2} + \frac{{16}}{{{{\left( {{x_0} + 1} \right)}^2}}}\\ \ge 4\left( {\sqrt[4]{{\frac{4}{{\left| {{x_0} + 1} \right|}}\left( {2\left| {{x_0} + 1} \right|} \right)\left( {4{{\left( {{x_0} + 1} \right)}^2}} \right)\frac{{16}}{{{{\left( {{x_0} + 1} \right)}^2}}}}}} \right) = 16\left( {\sqrt[4]{2}} \right)\end{array}\]
Dấu bằng xảy ra khi và chỉ khi
\[\frac{4}{{\left| {{x_0} + 1} \right|}} = 2\left| {{x_0} + 1} \right| = 4{\left( {{x_0} + 1} \right)^2} = \frac{{16}}{{{{\left( {{x_0} + 1} \right)}^2}}} \Leftrightarrow {\left( {{x_0} + 1} \right)^2} = 2 \Leftrightarrow {x_0} = - 1 \pm \sqrt 2 \]
+ Với \[{x_0} = - 1 - \sqrt 2 \Rightarrow {y_0} = 1 + \sqrt 2 \Rightarrow {\Delta _1}:y = x + 2\sqrt 2 + 2\]
+ Với \[{x_0} = - 1 + \sqrt 2 \Rightarrow {y_0} = 1 - \sqrt 2 \Rightarrow {\Delta _2}:y = x - 2\sqrt 2 + 2\].

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Có bao nhiêu giá trị nguyên của tham số \(m\) để hàm số \(y = \frac{{x + 2}}{{x + 5m}}\) đồng biến trên khoảng \(\left( { - \infty \,; - 10} \right)\)?

Xem đáp án » 11/02/2023 93,112

Câu 2:

Để thiết kế một chiếc bể cá hình hộp chữ nhật có chiều cao là \(60\,{\rm{cm}}\), thể tích \[96000\,{\rm{c}}{{\rm{m}}^3}\]. Người thợ dùng loại kính để sử dụng làm mặt bên có giá thành \(70000\)VNĐ/m2 và loại kính để làm mặt đáy có giá thành \(100000\) VNĐ/m2. Tính chi phí thấp nhất để hoàn thành bể cá.

Xem đáp án » 11/02/2023 31,166

Câu 3:

Có bao nhiêu giá trị nguyên của tham số \(m\) sao cho hàm số \(f\left( x \right) = \frac{1}{3}{x^3} + m{x^2} + 4x + 2020\) đồng biến trên \(\mathbb{R}\)?

Xem đáp án » 11/02/2023 20,949

Câu 4:

Cho khối chóp có diện tích đáy bằng \({a^2}\) và chiều cao bằng \(2a\). Thể tích của khối chóp đã cho bằng

Xem đáp án » 11/02/2023 14,462

Câu 5:

Cho hình lập phương \(ABCD.A'B'C'D'\), khoảng cách từ \(C'\) đến mặt phẳng \(\left( {A'BD} \right)\) bằng \(\frac{{4a\sqrt 3 }}{3}.\) Tính theo \(a\) thể tích khối lập phương \(ABCD.A'B'C'D'\,.\)

Xem đáp án » 11/02/2023 12,877

Câu 6:

Cho các số thực \(x\), \(y\) thỏa mãn \({x^2} - xy + {y^2} = 2\). Tìm giá trị nhỏ nhất của biểu thức \(P = {x^2} + xy + {y^2}\).

Xem đáp án » 11/02/2023 7,661

Câu 7:

Trên khoảng \(\left( { - \pi \,;\,\pi } \right)\) đồ thị hàm số \(y = \sin x\) được cho như hình vẽ:

Media VietJack

Hỏi hàm số \(y = \sin x\) nghịch biến trên khoảng nào sau đây?

Xem đáp án » 11/02/2023 6,046
Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua