Câu hỏi:

11/02/2023 3,952 Lưu

Cho hình lăng trụ \(ABC.A'B'C'\) có đáy là tam giác đều cạnh \(4a\), hình chiếu của \(A'\) trên đáy trùng với trọng tâm \(G\) của tam giác \(ABC\), góc giữa cạnh bên và đáy bằng \({30^0}\). Tính thể tích khối lăng trụ \(ABC.A'B'C'\)

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack
Lời giải

Media VietJack

Gọi \(E\) là trung điểm của \(BC\).
Ta có
+) \(CE = \frac{1}{2}BC = 2a\), \(AE = \sqrt {A{C^2} - B{C^2}} = \sqrt {16{a^2} - 4{a^2}} = 2a\sqrt 3 \)
+) \({S_{ABC}} = \frac{1}{2}AE.BC = 4{a^2}\sqrt 3 \)
+) \(AG = \frac{2}{3}AE = \frac{{4a\sqrt 3 }}{3}\)
Vì \(A'G \bot (ABC)\)nên \(AG\) là hình chiếu vuông góc của \[A'A\] trên đáy,do đó góc giữa \(AA'\) và đáy là góc .
+) \(A'G = AG.\tan {60^0} = 4a\)
+) \({V_{ABC.A'B'C'}} = {S_{ABC}}.A'G = 16{a^3}\sqrt 3 \)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Lời giải
Ta có \(y = \frac{{x + 2}}{{x + 5m}}\,\,\left( {x \ne - 5m} \right)\), đạo hàm \(y' = \frac{{5m - 2}}{{{{\left( {x + 5m} \right)}^2}}}\).
Yêu cầu bài toán \( \Leftrightarrow \left\{ \begin{array}{l}y' > 0\\ - 5m \notin \left( { - \infty \,; - 10} \right)\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}5m - 2 > 0\\ - 5m \ge - 10\end{array} \right. \Leftrightarrow \frac{2}{5} < m \le 2\).
Do \(m \in \mathbb{Z}\), nên \(m \in \left\{ {1\,;2} \right\}\). Vậy có 2 giá trị nguyên của tham số \(m\) thoả mãn yêu cầu bài toán.

Lời giải

Lời giải
Gọi \[x,\;y\left( {\rm{m}} \right)\], \[\left( {x > 0,y > 0} \right)\] là chiều dài và chiều rộng của đáy bể.
Khi đó theo đề ta suy ra \[0,6xy = 0,096 \Leftrightarrow y = \frac{{0,16}}{x}\].
Giá thành của bể cá được xác định theo hàm số sau:
\[f\left( x \right) = 2.0,6\left( {x + \frac{{0,16}}{x}} \right).70000 + 100000.x.\frac{{0,16}}{x}\]
\[ \Leftrightarrow f\left( x \right) = 84000\left( {x + \frac{{0,16}}{x}} \right) + 16000\]
Ta có \[f'\left( x \right) = 84000\left( {1 - \frac{{0,16}}{{{x^2}}}} \right) \Rightarrow f'\left( x \right) = 0 \Leftrightarrow x = 0,4\]
Bảng biến thiên:

Media VietJack

Dựa vào bảng biến thiên suy ra chi phí thấp nhất để hoàn thành bể cá là \[f\left( {0,4} \right) = 83200\] VNĐ.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP