Câu hỏi:

11/02/2023 1,141

Cho hình chóp \(S.ABCD\) có đáy là hình thang cân với \(AB = 2a;\,BC = CD = DA = a\). \(SA\) vuông góc với mặt phẳng đáy, \(SC\) tạo với đáy một góc \({60^o}\). Mặt phẳng (P) đi qua \(A\), vuông góc \(SB\) và cắt các cạnh \(SB,\,\,SC,\,SD\) lần lượt tại \(M,\,N,\,P\). Tính thể tích khối đa diện \(ABCDMNP\).

Đáp án chính xác

Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa... kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 70k).

Tổng ôn Toán-lý hóa Văn-sử-đia Tiếng anh & các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack
Lời giải

Media VietJack

Do là\(ABCD\) hình thang cân\(AB = 2a;\,BC = CD = DA = a\).
Ta có \(AC = DB = a\sqrt 3 \).\(AC \bot BC;\,\,AD \bot DB\).
Do \(\widehat {\left( {SC,(ABCD)} \right)} = \widehat {\left( {SC,AC} \right)} = {60^o}\,\, \Rightarrow SA = 3a\).
Do\(\left( P \right) \bot SB\). Do\(AC \bot BC;\,\,AD \bot DB\) ta chứng minh được \(AM \bot SB\), \(AN \bot SC,\,\,AP \bot SD\).
Có \(\frac{{SM}}{{SB}} = \frac{{S{A^2}}}{{S{B^2}}} = \frac{9}{{13}}\); \(\frac{{SN}}{{SC}} = \frac{{S{A^2}}}{{S{C^2}}} = \frac{3}{4}\); \(\frac{{SP}}{{SD}} = \frac{{S{A^2}}}{{S{D^2}}} = \frac{9}{{10}}\).
Ta tính được \({V_{S.ACD}} = \frac{{{a^3}\sqrt 3 }}{4}\);\({V_{S.ABC}} = \frac{{{a^3}\sqrt 3 }}{2}\).
Có \(\frac{{{V_{SAMN}}}}{{{V_{S.ABC}}}} = \frac{{SM}}{{SB}}.\frac{{SN}}{{SC}} = \frac{{27}}{{52}}\); \({V_{S.AMN}} = \frac{{27{a^3}\sqrt 3 }}{{104}}\); \(\frac{{{V_{SANP}}}}{{{V_{S.ACD}}}} = \frac{{SP}}{{SD}}.\frac{{SN}}{{SC}} = \frac{{27}}{{40}}\); \({V_{S.ANP}} = \frac{{27{a^3}\sqrt 3 }}{{160}}\).
\[{V_{S.AMNP}} = \frac{{891}}{{2080}}{a^3}\sqrt 3 \]\( \Rightarrow {V_{MNP.ABCD}} = \frac{{669{a^3}\sqrt 3 }}{{2080}}\).

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Có bao nhiêu giá trị nguyên của tham số \(m\) để hàm số \(y = \frac{{x + 2}}{{x + 5m}}\) đồng biến trên khoảng \(\left( { - \infty \,; - 10} \right)\)?

Xem đáp án » 11/02/2023 88,022

Câu 2:

Để thiết kế một chiếc bể cá hình hộp chữ nhật có chiều cao là \(60\,{\rm{cm}}\), thể tích \[96000\,{\rm{c}}{{\rm{m}}^3}\]. Người thợ dùng loại kính để sử dụng làm mặt bên có giá thành \(70000\)VNĐ/m2 và loại kính để làm mặt đáy có giá thành \(100000\) VNĐ/m2. Tính chi phí thấp nhất để hoàn thành bể cá.

Xem đáp án » 11/02/2023 29,810

Câu 3:

Có bao nhiêu giá trị nguyên của tham số \(m\) sao cho hàm số \(f\left( x \right) = \frac{1}{3}{x^3} + m{x^2} + 4x + 2020\) đồng biến trên \(\mathbb{R}\)?

Xem đáp án » 11/02/2023 20,715

Câu 4:

Cho khối chóp có diện tích đáy bằng \({a^2}\) và chiều cao bằng \(2a\). Thể tích của khối chóp đã cho bằng

Xem đáp án » 11/02/2023 14,093

Câu 5:

Cho hình lập phương \(ABCD.A'B'C'D'\), khoảng cách từ \(C'\) đến mặt phẳng \(\left( {A'BD} \right)\) bằng \(\frac{{4a\sqrt 3 }}{3}.\) Tính theo \(a\) thể tích khối lập phương \(ABCD.A'B'C'D'\,.\)

Xem đáp án » 11/02/2023 12,432

Câu 6:

Cho các số thực \(x\), \(y\) thỏa mãn \({x^2} - xy + {y^2} = 2\). Tìm giá trị nhỏ nhất của biểu thức \(P = {x^2} + xy + {y^2}\).

Xem đáp án » 11/02/2023 7,449

Câu 7:

Trên khoảng \(\left( { - \pi \,;\,\pi } \right)\) đồ thị hàm số \(y = \sin x\) được cho như hình vẽ:

Media VietJack

Hỏi hàm số \(y = \sin x\) nghịch biến trên khoảng nào sau đây?

Xem đáp án » 11/02/2023 6,026