Câu hỏi:

14/02/2023 12,976

Cho hàm số \(f\left( x \right)\) có đạo hàm liên tục trên \(\mathbb{R}\). Đồ thị của hàm số \(y = f\left( {5 - 2x} \right)\) như hình vẽ sau. Có bao nhiêu giá trị thực của tham số \(m\)thuộc khoảng \(\left( { - 9;9} \right)\) thỏa mãn \(2m \in \mathbb{Z}\) và hàm số \(y = \left| {2f\left( {4{x^3} + 1} \right) + m - \frac{1}{2}} \right|\) có 5 điểm cực trị?
Media VietJack

Đáp án chính xác

Sách mới 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 110k).

20 đề Toán 20 đề Văn Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack
Lời giải
Ta có \(y = f\left( {5 - 2x} \right) \Rightarrow y' = - 2f'\left( {5 - 2x} \right)\). Từ đồ thị, suy ra
\(y' = 0 \Leftrightarrow \left[ \begin{array}{l}x = 0\\x = 2\\x = 4\end{array} \right.\). Đặt \[t = 5 - 2x \Rightarrow x = \frac{{5 - t}}{2} \Rightarrow f'\left( t \right) = 0 \Leftrightarrow \left[ \begin{array}{l}t = 5\\t = 1\\t = - 3\end{array} \right.\]
Đặt \[g\left( x \right) = 2f\left( {4{x^3} + 1} \right) + m - \frac{1}{2} \Rightarrow g'\left( x \right) = 24{x^2}f'\left( {4{x^3} + 1} \right) = 0 \Leftrightarrow \left[ \begin{array}{l}{x^2} = 0\\4{x^3} + 1 = 5 \Rightarrow {x^3} = 1\\4{x^3} + 1 = 1 \Rightarrow {x^3} = 0\\4{x^3} + 1 = - 3 \Rightarrow {x^3} = - 1\end{array} \right.\]
Từ đó suy ra \[g\left( x \right)\] có 3 cực trị. Để \[y = \left| {g\left( x \right)} \right|\] có 5 cực trị thì phương trình \[g\left( x \right) = 0 \Leftrightarrow f\left( {4{x^3} + 1} \right) = \frac{{1 - 2m}}{4}\] có 2 nghiệm đơn phân biệt.
Đặt \[u = 4{x^3} + 1 \Rightarrow x = \sqrt[3]{{\frac{{u - 1}}{4}}}\] và phương trình trở thành: \[f\left( u \right) = \frac{{1 - 2m}}{4}\].
Từ đây, kết hợp với đồ thị ta có điều kiện là \[\left[ \begin{array}{l}\frac{{1 - 2m}}{4} \ge \frac{9}{4}\\ - 4 < \frac{{1 - 2m}}{4} \le 0\end{array} \right. \Rightarrow \left[ \begin{array}{l}2m \le - 8\\1 \le 2m < 17\end{array} \right.\].
Do \[m \in \left( { - 9\,;\,9} \right),\,2m \in \mathbb{Z} \Rightarrow \left[ \begin{array}{l}2m \in \left\{ { - 17, - 16, \ldots , - 9, - 8} \right\}\\2m \in \left\{ {1,2,3, \ldots ,16} \right\}\end{array} \right.\].
Vậy có tất cả 26 giá trị của \[m\]thỏa mãn yêu cầu bài toán.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho hình chóp \(S.ABC\) có đáy \(ABC\) là tam giác vuông cân tại \(A\), \[SA = AB = a\], \(SA\) vuông góc với mặt phẳng \((ABC)\). Thể tích của khối chóp \(S.ABC\) bằng

Xem đáp án » 13/02/2023 21,209

Câu 2:

Một sợi dây kim loại dài \(60cm\) được cắt thành hai đoạn. Đoạn dây thứ nhất uốn thành hình vuông cạnh \(a\), đoạn dây thứ hai uốn thành đường tròn bán kính \(r\). Để tổng diện tích của hình vuông và hình tròn nhỏ nhất thì tỉ số \(\frac{a}{r}\) bằng:
Media VietJack

Xem đáp án » 14/02/2023 13,507

Câu 3:

Tổng số đường tiệm cận ngang và tiệm cận đứng của đồ thị hàm số \[y = \frac{{2{x^2} - 3x + 1}}{{{x^2} - x}}\]

Xem đáp án » 13/02/2023 7,395

Câu 4:

Cho hình chóp \(S.ABC\) có đáy \(ABC\) là tam giác đều cạnh \(a\), hai mặt phẳng \(\left( {SAB} \right)\)\(\left( {SAC} \right)\) cùng vuông góc với đáy, góc tạo bởi \(\left( {SBC} \right)\) và mặt đáy bằng \(60^\circ \). Thể tích khối chóp bằng

Xem đáp án » 13/02/2023 7,392

Câu 5:

Đồ thị hàm số nào dưới đây có dạng như đường cong trong hình dưới đây?

Media VietJack

Xem đáp án » 13/02/2023 7,109

Câu 6:

Tìm giá trị lớn nhất \(M\) của hàm số \(y = {x^4} - 2{x^2} + 3\) trên đoạn \(\left[ {0;{\mkern 1mu} \sqrt 3 } \right]\).

Xem đáp án » 13/02/2023 6,556

Bình luận


Bình luận