Câu hỏi:

15/02/2023 49,331 Lưu

Cho hình chóp tứ giác \[S.ABCD\] có đáy \[ABCD\] là hình vuông cạnh \[a\], cạnh bên \[SA\] vuông góc với mặt phẳng đáy và \[SA = a\sqrt 2 \]. Tính thể tích \[V\] của khối chóp \[S.ABCD\].

A. \[V = \frac{{\sqrt 2 {a^3}}}{6}\].
B. \[V = \frac{{\sqrt 2 {a^3}}}{3}\].
C. \[V = \sqrt 2 {a^3}\].
D. \[V = \frac{{\sqrt 2 {a^3}}}{4}\].

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Lời giải

Chọn B

Media VietJack

Ta có \[V = \frac{1}{3}SA.{S_{ABCD}} = \frac{1}{3}a\sqrt 2 .{a^2} = \frac{{\sqrt 2 {a^3}}}{3}\].

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A. \(\frac{3}{{\sqrt[3]{4}}}\).
B. \(\frac{1}{{\sqrt 2 }}\).
C. \(1\).
D. \(\frac{1}{{\sqrt[3]{2}}}\).

Lời giải

Lời giải

Chọn D

TXD: \(D = \mathbb{R}\backslash \left\{ 0 \right\}\).

\(y' = 2x - \frac{1}{{{x^2}}}\), \(y' = 0 \Leftrightarrow x = \frac{1}{{\sqrt[3]{2}}}.\)

Media VietJack

Dựa vào BBT thì \(x = \frac{1}{{\sqrt[3]{2}}}\) hàm số đạt giá trị nhỏ nhất trên \(\left( {0; + \infty } \right)\).

Câu 2

A. \(y = \frac{{x + 2}}{{x + 1}}\).
B. \(y = \frac{{2x + 1}}{{x + 1}}\).
C. \(y = \frac{{x - 1}}{{x + 1}}\).
D. \(y = \frac{{x + 3}}{{1 - x}}\).

Lời giải

Lời giải

Chọn B

Dựa vào đồ thị ta có đường tiệm cận đứng \(x = - 1\) và đường tiệm cận ngang \(y = 2\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

A. \(y = {x^2} - 3x\).
B. \(y = \frac{{3x + 1}}{{2x - 1}}\).
C. \(y = {x^3} - 3x + 1\).
D. \(y = {x^4} + 2x\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP