Câu hỏi:

16/02/2023 17,233

Với giá trị nào của \(x\) thì hàm số \(y = {x^2} + \frac{1}{x}\) đạt giá trị nhỏ nhất trên khoảng \(\left( {0; + \infty } \right)\)?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack
Lời giải

Chọn D

TXD: \(D = \mathbb{R}\backslash \left\{ 0 \right\}\).

\(y' = 2x - \frac{1}{{{x^2}}}\), \(y' = 0 \Leftrightarrow x = \frac{1}{{\sqrt[3]{2}}}.\)

Media VietJack

Dựa vào BBT thì \(x = \frac{1}{{\sqrt[3]{2}}}\) hàm số đạt giá trị nhỏ nhất trên \(\left( {0; + \infty } \right)\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Lời giải

Chọn B

Media VietJack

Ta có \[V = \frac{1}{3}SA.{S_{ABCD}} = \frac{1}{3}a\sqrt 2 .{a^2} = \frac{{\sqrt 2 {a^3}}}{3}\].

Lời giải

Lời giải

Chọn A

Ta có \(f'\left( x \right) = 0 \Leftrightarrow \left( {x - 1} \right){\left( {2x - 1} \right)^2}\left( {3 - x} \right) = 0 \Leftrightarrow \left[ \begin{array}{l}x = \frac{1}{2}\\x = 1\\x = 3\end{array} \right..\) Suy ra bảng xét dấu \(f'\left( x \right)\)

Media VietJack

Căn cứ vào bảng xét dấu \(f'\left( x \right)\) ta thấy hàm số\(f\left( x \right)\)đồng biến trên khoảng \(\left( {1;3} \right)\)\(\left( {2;\,3} \right) \subset \left( {1;3} \right)\)nên chọn#

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP