Câu hỏi:
16/02/2023 8,748
Cho hàm số \(y = a{x^4} + b{x^2} + c\). Biết rằng đồ thị hàm số có hai điểm cực trị là \(A\left( {0;\,2} \right)\)và \(B\left( {2;\, - 14} \right)\). Giá trị của \(f\left( 1 \right)\) bằng
Câu hỏi trong đề: Bộ 20 đề thi giữa kì 1 Toán 12 năm 2022-2023 có đáp án !!
Quảng cáo
Trả lời:
Chọn D
\(y = a{x^4} + b{x^2} + c\).
\(y' = 4a{x^3} + 2bx\).
Hàm số đạt cực trị tại \(x = 2 \Rightarrow y'\left( 2 \right) = 0 \Leftrightarrow 0 = 32a + 4b\).
Đồ thị hàm số đi qua điểm
\(A\left( {0;\,2} \right) \Rightarrow c = 2\),
\(B\left( {2;\, - 14} \right) \Rightarrow - 14 = 16a + 4b + c\).
Từ đó suy ra: \(\left\{ \begin{array}{l}a = 1\\b = - 8\\c = 2\end{array} \right. \Rightarrow y = {x^4} - 8{x^2} + 2\).
Vậy \(f\left( 1 \right) = 1 - 8 + 2 = - 5\).
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Lời giải
Chọn B

Ta có \[V = \frac{1}{3}SA.{S_{ABCD}} = \frac{1}{3}a\sqrt 2 .{a^2} = \frac{{\sqrt 2 {a^3}}}{3}\].
Lời giải
Chọn D
TXD: \(D = \mathbb{R}\backslash \left\{ 0 \right\}\).
\(y' = 2x - \frac{1}{{{x^2}}}\), \(y' = 0 \Leftrightarrow x = \frac{1}{{\sqrt[3]{2}}}.\)
Dựa vào BBT thì \(x = \frac{1}{{\sqrt[3]{2}}}\) hàm số đạt giá trị nhỏ nhất trên \(\left( {0; + \infty } \right)\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.