Câu hỏi:

16/02/2023 224

Cho hàm số \(y = f\left( x \right)\)có đạo hàm \(f'\left( x \right) = {x^2}\left( {x - 1} \right){\left( {x + 1} \right)^3}\)với mọi \(x \in \mathbb{R}\). Số điểm cực trị của hàm số \(y = f\left( x \right)\)

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack
Lời giải
Chọn C
\(f'\left( x \right) = 0 \Leftrightarrow \left[ \begin{array}{l}x = 0\\x = 1\\x = - 1\end{array} \right.\)trong đó có \(x = 0\)là nghiệm bội \(2\), \(x = 1\)là nghiệm đơn, \(x = - 1\)là nghiệm bội \(3\)và hàm số có đạo hàm liên tục trên \(\mathbb{R}\).
Ta có bảng xét dấu

Media VietJack

Vậy nên hàm số có \[2\]điểm cực trị.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Lời giải

Lời giải
Chọn B
\[\mathop {\lim }\limits_{x \to + \infty } y = \mathop {\lim }\limits_{x \to + \infty } \frac{1}{{2f\left( x \right) - 3}} = 0\]
\[ \Rightarrow \] Đồ thị hàm số \[y = g\left( x \right)\] có tiệm cận ngang là đường thẳng \[y = 0\].
\[\mathop {\lim }\limits_{x \to - \infty } y = \mathop {\lim }\limits_{x \to - \infty } \frac{1}{{2f\left( x \right) - 3}} = 0\]
\[ \Rightarrow \] Đồ thị hàm số \[y = g\left( x \right)\] có tiệm cận ngang là đường thẳng \[y = 0\].
Số tiệm cận đứng của đồ thị hàm số \[y = g\left( x \right)\] chính là số nghiệm của phương trình \[2f\left( x \right) = 3\].
Số nghiệm của phương trình \[2f\left( x \right) = 3\] chính là số giao điểm của đồ thị hàm số \[y = g\left( x \right)\] và đường thẳng \[y = \frac{3}{2}\].
Từ bảng biến thiên, ta thấy đường thẳng \[y = \frac{3}{2}\] cắt đồ thị hàm số \[y = g\left( x \right)\] tại đúng \[2\] điểm phân biệt, một điểm có hoành độ thuộc \[\left( {1;2} \right)\], điểm còn lại có hoành độ thuộc \[\left( {2; + \infty } \right)\].
Vậy đồ thị hàm số \[y = g\left( x \right)\]\[1\] tiệm cận ngang và \[2\] tiệm cận đứng.

Câu 2

Lời giải

Lời giải
Chọn B
Vì hàm số \(y = {x^3} + 4x + 1\)\(y' = 3{x^2} + 4 > 0\), \(\forall x \in \mathbb{R}\).
Vậy hàm số \(y = {x^3} + 4x + 1\)luôn đồng biến trên tập xác định của nó.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP