Câu hỏi:

18/02/2023 662

Có bao nhiêu giá trị nguyên của tham số m để hàm số y=x33x2+2mx1  có 2 cực trị x1,x2  thỏa mãn x1x2=2  ?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Chọn A

Ta có hàm số y=x33x2+2mx1y'=3x26x+2m

Hàm số y=x33x2+2mx1  có 2 cực trị x1,x2  khi và chỉ khi phương trình  3x26x+2m=0 có hai nghiệm phân biệt               x1,x2Δ'>096m>0m<32.

Áp dụng định lý Vi-et cho phương trình 3x26x+2m=0  .

Ta có x1+x2=2x1x2=2m3

Mà theo đề ta lại có x1x2=2x1+x224x1x2=448m3=4m=0  thỏa điều kiện *  .

Vậy có 1 giá trị nguyên của tham số m  thỏa yêu cầu bài toán.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Cho hàm số bậc ba y=ax3+bx2+cx+d  (a0) có đồ thị như hình vẽ

Cho hàm số bậc ba  y= ax^3+bx^2+cx+d ( a khác 0) có đồ thị như hình vẽ    Mệnh đề nào dưới đây đúng? (ảnh 1)

 

Mệnh đề nào dưới đây đúng?

Lời giải

Chọn A

Cho hàm số bậc ba  y= ax^3+bx^2+cx+d ( a khác 0) có đồ thị như hình vẽ    Mệnh đề nào dưới đây đúng? (ảnh 2)

Từ đồ thị ta có limx+y= ,  limxy=+ do đó a<0   (1).

Đồ thị hàm số đã cho cắt trục Oy  tại điểm có tung độ y=d , từ đồ thị đã cho suy ra  d<0 (2).

Giả sử hàm số đạt cực tiểu tại x1  , đạt cực đại tại x2 , từ đó x1 , x2 là nghiệm của phương trình 3ax2+2bx+c=0 , theo viet ta có: x1+x2=2b3ax1.x2=c3a.

Từ đồ thị đã cho ta có    x1+x2=2b3a>0x1.x2=c3a>0b>0c<0(3).

Từ (1), (2), (3) chọn A.

Lời giải

a. TXĐ: D=R

             y'=x34x;y'=0x=0y=1x=±2y=3.

              Bảng biến thiên:

           

a. Tìm cực trị của hàm số   y= 1/4x^4-2x^2+1 (ảnh 1)

              Từ bảng biến thiên suy ra cực tiểu hàm số là  y=-3, cực đại của hàm số là y=1 .

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay