Câu hỏi:

19/02/2023 2,008

Cho lăng trụ tam giác đều \(ABC \cdot A'B'C'\). Tam giác \(ABC'\)có diện tích bằng \(8\)và hợp với mặt phẳng đáy một góc có số đo \({30^^\circ }\). Tính thể tích của khối lăng trụ.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack
Lời giải
Chọn A

Media VietJack

Gọi \(I\)là trung điểm của \(AB\), ta có \(\left\{ {\begin{array}{*{20}{l}}{AB \bot CI}\\{AB \bot CC'}\end{array} \Rightarrow AB \bot \left( {CIC'} \right)} \right.\).
Ta có \(\left\{ {\begin{array}{*{20}{l}}{AB = \left( {ABC} \right) \cap \left( {ABC'} \right)}\\{AB \bot \left( {CIC'} \right)}\\{\left( {CIC'} \right) \cap \left( {ABC} \right) = CI}\\{\left( {CIC'} \right) \cap \left( {ABC'} \right) = C'}\end{array}} \right.\) \( \Rightarrow \left( {\overline {\left( {ABC} \right),\left( {ABC'} \right)} } \right) = \left( {\widehat {CI,C'I}} \right) = \widehat {C'IC} = {30^^\circ }\).
Đặt \(AB = x(x > 0)\).
Vì \(CI\)là đường cao của tam giác đều \(ABC\)nên \(CI = \frac{{x\sqrt 3 }}{2}\).
+) \(CC' = CI \cdot {\rm{tan}}{30^^\circ } = \frac{{x\sqrt 3 }}{2} \cdot \frac{{\sqrt 3 }}{3} = \frac{x}{2}\)\(C'I = \frac{{CI}}{{{\rm{cos}}{{30}^^\circ }}} = x\).
Diện tích tam giác \(ABC'\) là \({S_{ABC'}} = \frac{1}{2}AB \cdot C'I \Leftrightarrow 8 = \frac{1}{2}{x^2} \Leftrightarrow x = 4\).
Thể tích khối lăng trụ đã cho là \(V = {S_{AQC}} \cdot CC' = \frac{{{x^2}\sqrt 3 }}{4} \cdot \frac{{x\sqrt 3 }}{2} \cdot {\rm{tan}}{30^^\circ } = \frac{{3{x^3}}}{8} \cdot \frac{{\sqrt 3 }}{3} = \frac{{{x^3}\sqrt 3 }}{8} = \frac{{{4^3}\sqrt 3 }}{8} = 8\sqrt 3 \).

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Trong các hàm số sau, hàm số nào đồng biến trên tập xác định của nó?

Lời giải

Lời giải
Chọn B
Vì hàm số \(y = {x^3} + 4x + 1\)\(y' = 3{x^2} + 4 > 0\), \(\forall x \in \mathbb{R}\).
Vậy hàm số \(y = {x^3} + 4x + 1\)luôn đồng biến trên tập xác định của nó.

Câu 2

Cho hàm số \[y = f\left( x \right)\] liên tục trên \[\mathbb{R}\backslash \left\{ 1 \right\}\] và có bảng biến thiên như sau:

Media VietJack

Tìm số đường tiệm cận đứng và tiệm cận ngang của đồ thị hàm số \[y = g\left( x \right) = \frac{1}{{2f\left( x \right) - 3}}\].

Lời giải

Lời giải
Chọn B
\[\mathop {\lim }\limits_{x \to + \infty } y = \mathop {\lim }\limits_{x \to + \infty } \frac{1}{{2f\left( x \right) - 3}} = 0\]
\[ \Rightarrow \] Đồ thị hàm số \[y = g\left( x \right)\] có tiệm cận ngang là đường thẳng \[y = 0\].
\[\mathop {\lim }\limits_{x \to - \infty } y = \mathop {\lim }\limits_{x \to - \infty } \frac{1}{{2f\left( x \right) - 3}} = 0\]
\[ \Rightarrow \] Đồ thị hàm số \[y = g\left( x \right)\] có tiệm cận ngang là đường thẳng \[y = 0\].
Số tiệm cận đứng của đồ thị hàm số \[y = g\left( x \right)\] chính là số nghiệm của phương trình \[2f\left( x \right) = 3\].
Số nghiệm của phương trình \[2f\left( x \right) = 3\] chính là số giao điểm của đồ thị hàm số \[y = g\left( x \right)\] và đường thẳng \[y = \frac{3}{2}\].
Từ bảng biến thiên, ta thấy đường thẳng \[y = \frac{3}{2}\] cắt đồ thị hàm số \[y = g\left( x \right)\] tại đúng \[2\] điểm phân biệt, một điểm có hoành độ thuộc \[\left( {1;2} \right)\], điểm còn lại có hoành độ thuộc \[\left( {2; + \infty } \right)\].
Vậy đồ thị hàm số \[y = g\left( x \right)\]\[1\] tiệm cận ngang và \[2\] tiệm cận đứng.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Đường cong trong hình bên là đồ thị của một trong bốn hàm số dưới đây. Tìm hàm số đó.
Media VietJack

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Cho hàm số \[y = f\left( x \right)\] liên tục trên \[\mathbb{R}\] và có bảng biến thiên như sau:

Media VietJack

Trong các mệnh đề sau, mệnh đề nào sai?

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Đồ thị hàm số nào trong các hàm số được cho dưới đây không có tiệm cận ngang?

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay