Câu hỏi:

21/02/2023 1,940

Khoảng cách giữa hai điểm cực trị của đồ thị hàm số \(y = {x^3} + 3{x^2} - 4\)

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án C

Phương pháp:

+) Giải phương trình \(y' = 0\) xác định các điểm cực trị của hàm số.

+) Sử dụng công thức tính độ dài đoạn thẳng: \(AB = \sqrt {{{\left( {{x_A} - {x_B}} \right)}^2} - {{\left( {{y_A} - {y_B}} \right)}^2}} \)

Phương pháp:

+) \(D = \mathbb{R};\,\,\,y' = 3{x^2} + 6x;\,\,\,y' = 0 \Leftrightarrow x = 0\) hoặc \(x = - 2\)

+) Tọa độ hai điểm cực trị là \(A\left( {0; - 4} \right),\,\,\,B\left( { - 2;0} \right)\)

+) Khoảng cách giữa hai điểm cực trị là \(AB = \sqrt {{{\left( {{x_A} - {x_B}} \right)}^2} - {{\left( {{y_A} - {y_B}} \right)}^2}} = \sqrt {20} = 2\sqrt 5 \)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Lời giải

Đáp án D

Phương pháp:

Giải bất phương trình \(y' < 0\)

Cách giải:

Tập xác định \(D = R\)

\(y' = {x^3} - 4x + 3;\,\,\,y' = 0 \Leftrightarrow \left[ \begin{array}{l}x = 1\\x = 3\end{array} \right.\)

Bảng biến thiên:

Hàm số y = 1/3x^3 - 2x^2 + 3x - 1 nghịch biến trên khoảng nào trong các khaongr sau đây  (ảnh 1)

Từ bảng biến thiên, ta thấy hàm số nghịch biến trên \(\left( {1;3} \right)\)

Lời giải

Đáp án C

Phương pháp:

Số điểm cực trị của hàm số \(y = f\left( x \right)\) là số điểm mà qua đó \(f'\left( x \right)\) đổi dấu.

Cách giải:

\(y = f\left( x \right) - 2x \Rightarrow y' = f'\left( x \right) - 2\)

Ta có: \(y' = 0 \Leftrightarrow f'\left( x \right) - 2 = 0 \Leftrightarrow f'\left( x \right) = 2 \Leftrightarrow \left[ \begin{array}{l}x = {x_1}\\x = 0\\x = {x_2}\end{array} \right.\)

Bảng biến thiên:

Cho hàm số y = f(x) có đạo hàm liên tục trên R. Đồ thị hàm số y = f'(x) như hình vẽ sau (ảnh 1)

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP