Câu hỏi:
21/02/2023 317Cho tứ diện OABC có OA, OB, OC đôi một vuông góc với nhau. Biết \(OA = a,\,\,OB = 2a\) , và đường thẳng AC tạo với mặt phẳng \(\left( {OBC} \right)\) một góc \({60^0}\). Thể tích khối tứ diện OABC bằng
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Đáp án A
Phương pháp:
Tứ diện OABC có OA, OB, OC đôi một vuông góc \( \Rightarrow {V_{OABC}} = \frac{1}{6}OA.OB.OC\)
Cách giải: Theo giả thiết OA, OB, OC đôi một vuông góc với nhau nên \(OA \bot \left( {OBC} \right)\), OC là hình chiếu của AC lên mặt phẳng \(\left( {OBC} \right)\). Do đó \(ACO = {60^0}\), OA là chiều cao của tứ diện OABC. Xét tam giác vuông AOC có \(\tan {60^0} = \frac{{OA}}{{OC}}\) với \(OA = a\)
\( \Rightarrow OC = \frac{{OA}}{{\tan {{60}^0}}} = \frac{a}{{\sqrt 3 }} = \frac{{a\sqrt 3 }}{3};\,\,\,OB = 2a\)
Ta có: \({S_{OBC}} = \frac{1}{2}OB.OC = \frac{1}{2}.2a.\frac{{a\sqrt 3 }}{3} = \frac{{{a^2}\sqrt 3 }}{3};\,\,\,{V_{OABC}} = \frac{1}{3}OA.{S_{OBC}} = \frac{1}{3}a.\frac{{{a^2}\sqrt 3 }}{3} = \frac{{{a^3}\sqrt 3 }}{9}\)
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Hàm số \(y = \frac{1}{3}{x^3} - 2{x^2} + 3x - 1\) nghịch biến trên khoảng nào trong các khoảng sau đây?
Câu 2:
Cho hàm số \(y = f\left( x \right)\) có đạo hàm liên tục trên R. Đồ thị hàm số \(y = f'\left( x \right)\) như hình vẽ sau. Số điểm cực trị của hàm số \(y = f\left( x \right) - 2x\) là
Câu 3:
Cho hàm số \(y = f\left( x \right)\) xác định và có đạo hàm trên \(\mathbb{R}\backslash \left\{ { \pm 1} \right\}\). Hàm số có bảng biến thiên như hình vẽ dưới đây. Hỏi đồ thị hàm số \(y = f\left( x \right)\) có tất cả bao nhiêu đường tiệm cận?
Câu 4:
Cho đồ thị của hàm số \(y = f\left( x \right)\) như hình vẽ dưới đây:
Gọi S là tập hợp các giá trị nguyên dương của tham số m để hàm số \(y = \left| {f\left( {x - 2017} \right) + m} \right|\) có 5 điểm cực trị. Tổng tất cả các giá trị của các phần tử của tập S bằng
Câu 6:
Cho hàm số \(y = f\left( x \right)\) có đạo hàm là hàm số liên tục trên R với đồ thị hàm số \(y = f'\left( x \right)\) như hình vẽ. Biết \(f\left( a \right) > 0\), hỏi đồ thị hàm số \(y = f\left( x \right)\) cắt trục hoành tại nhiều nhất bao nhiêu điểm?
Câu 7:
Cho hình chóp S.ABC có đáy ABC là tam giác đều cạnh a, \(SA \bot \left( {ABC} \right)\), góc giữa đường thẳng SB và mặt phẳng \(\left( {ABC} \right)\) bằng \({60^0}\). Khoảng cách giữa hai đường thẳng AC và SB bằng:
về câu hỏi!