Câu hỏi:

21/02/2023 422

Cho tứ diện OABC có OA, OB, OC đôi một vuông góc với nhau. Biết \(OA = a,\,\,OB = 2a\) , và đường thẳng AC tạo với mặt phẳng \(\left( {OBC} \right)\) một góc \({60^0}\). Thể tích khối tứ diện OABC bằng

Đáp án chính xác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án A

Phương pháp:

Cho tứ diện OABC có OA, OB, OC đôi một vuông góc với nhau. Biết OA = a, OB = 2a, và (ảnh 1)

Tứ diện OABC có OA, OB, OC đôi một vuông góc \( \Rightarrow {V_{OABC}} = \frac{1}{6}OA.OB.OC\)

Cách giải: Theo giả thiết OA, OB, OC đôi một vuông góc với nhau nên \(OA \bot \left( {OBC} \right)\), OC là hình chiếu của AC lên mặt phẳng \(\left( {OBC} \right)\). Do đó \(ACO = {60^0}\), OA là chiều cao của tứ diện OABC. Xét tam giác vuông AOC có \(\tan {60^0} = \frac{{OA}}{{OC}}\) với \(OA = a\)

\( \Rightarrow OC = \frac{{OA}}{{\tan {{60}^0}}} = \frac{a}{{\sqrt 3 }} = \frac{{a\sqrt 3 }}{3};\,\,\,OB = 2a\)

Ta có: \({S_{OBC}} = \frac{1}{2}OB.OC = \frac{1}{2}.2a.\frac{{a\sqrt 3 }}{3} = \frac{{{a^2}\sqrt 3 }}{3};\,\,\,{V_{OABC}} = \frac{1}{3}OA.{S_{OBC}} = \frac{1}{3}a.\frac{{{a^2}\sqrt 3 }}{3} = \frac{{{a^3}\sqrt 3 }}{9}\)

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Hàm số \(y = \frac{1}{3}{x^3} - 2{x^2} + 3x - 1\) nghịch biến trên khoảng nào trong các khoảng sau đây?

Xem đáp án » 21/02/2023 9,820

Câu 2:

Cho hàm số \(y = f\left( x \right)\) có đạo hàm liên tục trên R. Đồ thị hàm số \(y = f'\left( x \right)\) như hình vẽ sau. Số điểm cực trị của hàm số \(y = f\left( x \right) - 2x\)

Xem đáp án » 21/02/2023 5,413

Câu 3:

Trong các biểu thức sau, biểu thức nào không có nghĩa?

Xem đáp án » 21/02/2023 4,132

Câu 4:

Cho hàm số \(y = f\left( x \right)\) có đạo hàm là hàm số liên tục trên R với đồ thị hàm số \(y = f'\left( x \right)\) như hình vẽ. Biết \(f\left( a \right) > 0\), hỏi đồ thị hàm số \(y = f\left( x \right)\) cắt trục hoành tại nhiều nhất bao nhiêu điểm?

Cho hàm số y = f(x) có đạo hàm là hàm số liên tục trên R với đồ thị hàm số y = f'(x) như hình (ảnh 1)

Xem đáp án » 21/02/2023 2,845

Câu 5:

Cho đồ thị của hàm số \(y = f\left( x \right)\) như hình vẽ dưới đây:

Gọi S là tập hợp các giá trị nguyên dương của tham số m để hàm số \(y = \left| {f\left( {x - 2017} \right) + m} \right|\) có 5 điểm cực trị. Tổng tất cả các giá trị của các phần tử của tập S bằng

Cho đồ thị của hàm số y = f(x) như hình vẽ dưới đây:  Gọi S là tập hợp các giá trị nguyên dương  (ảnh 1)

Xem đáp án » 21/02/2023 2,807

Câu 6:

Cho hàm số \(y = f\left( x \right)\) xác định và có đạo hàm trên \(\mathbb{R}\backslash \left\{ { \pm 1} \right\}\). Hàm số có bảng biến thiên như hình vẽ dưới đây. Hỏi đồ thị hàm số \(y = f\left( x \right)\) có tất cả bao nhiêu đường tiệm cận?

Cho hàm số y = f(x) xác định và có đạo hàm trên R \ {+ 1 1|. Hàm số có bẳng biến thiên như (ảnh 1)

Xem đáp án » 21/02/2023 2,747

Câu 7:

Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại B, \(AB = 3a,\,\,BC = 4a\)\(SA \bot \left( {ABC} \right)\). Góc giữa đường thẳng SC và mặt phẳng \(\left( {ABC} \right)\) bằng \({60^0}\). Gọi M là trung điểm của cạnh AC. Khoảng cách giữa hai đường thẳng AB và SM bằng

Xem đáp án » 21/02/2023 2,530
Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua