Câu hỏi:

21/02/2023 236

Tiếp tuyến của đồ thị hàm số \(y = \frac{{x + 1}}{{x - 2}}\) tại điểm \(M\left( {1; - 2} \right)\) có phương trình là

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án B

Phương pháp:

Phương trình tiếp tuyến của đồ thị hàm số \(y = f\left( x \right)\) tại điểm có hoành độ \(x = {x_0}\) là:

\(y = y'\left( {{x_0}} \right)\left( {x - {x_0}} \right) + {y_0}\)

Cách giải:

Phương trình tiếp tuyến tại điểm \(M\left( {1; - 2} \right)\) có dạng \(y = y'\left( 1 \right)\left( {x - 1} \right) - 2\)

Ta có \(y' = \left( {\frac{{x + 1}}{{x - 2}}} \right)' = \frac{{ - 3}}{{{{\left( {x - 2} \right)}^2}}};\,\,\,y'\left( 1 \right) = - 3\) suy ra \(y = - 3\left( {x - 1} \right) - 2 = - 3x + 1\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Lời giải

Đáp án D

Phương pháp:

Giải bất phương trình \(y' < 0\)

Cách giải:

Tập xác định \(D = R\)

\(y' = {x^3} - 4x + 3;\,\,\,y' = 0 \Leftrightarrow \left[ \begin{array}{l}x = 1\\x = 3\end{array} \right.\)

Bảng biến thiên:

Hàm số y = 1/3x^3 - 2x^2 + 3x - 1 nghịch biến trên khoảng nào trong các khaongr sau đây  (ảnh 1)

Từ bảng biến thiên, ta thấy hàm số nghịch biến trên \(\left( {1;3} \right)\)

Lời giải

Đáp án C

Phương pháp:

Số điểm cực trị của hàm số \(y = f\left( x \right)\) là số điểm mà qua đó \(f'\left( x \right)\) đổi dấu.

Cách giải:

\(y = f\left( x \right) - 2x \Rightarrow y' = f'\left( x \right) - 2\)

Ta có: \(y' = 0 \Leftrightarrow f'\left( x \right) - 2 = 0 \Leftrightarrow f'\left( x \right) = 2 \Leftrightarrow \left[ \begin{array}{l}x = {x_1}\\x = 0\\x = {x_2}\end{array} \right.\)

Bảng biến thiên:

Cho hàm số y = f(x) có đạo hàm liên tục trên R. Đồ thị hàm số y = f'(x) như hình vẽ sau (ảnh 1)

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP