Câu hỏi:
22/02/2023 127Tập hợp tất cả các giá trị của tham số m để hàm số \(y = {x^3} + {x^2} + \left( {m - 1} \right)x - 3\) đồng biến trên \(\mathbb{R}\) là:
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Đáp án B
Phương pháp:
Hàm số \(y = f\left( x \right)\) đồng biến trên R \( \Leftrightarrow f'\left( x \right) \ge 0\,\,\forall x \in R\) (bằng 0 tại hữu hạn điểm).
Cách giải:
\(y = {x^3} + {x^2} + \left( {m - 1} \right)x - 3 \Rightarrow y' = 3{x^2} + 2x + m - 1\)
Để hàm số đồng biến trên R thì \(y' \ge 0,\,\,\forall x \in R\) (bằng 0 tại hữu hạn điểm)
\( \Leftrightarrow \Delta ' \le 0 \Leftrightarrow 1 - 3\left( {m - 1} \right) \le 0 \Leftrightarrow 4 - 3m \le 0 \Leftrightarrow m \ge \frac{4}{3}\)
Vậy \(m \in \left[ {\frac{4}{3}; + \infty } \right)\)
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Hình nón \(\left( N \right)\) có thể tích bằng \(4\pi \) và chiều cao là 3. Tính bán kính đường tròn đáy của khối nón \(\left( N \right)\)
Câu 2:
Biết rằng GTLN của hàm số \(y = \frac{{{{\ln }^2}x}}{x}\) trên đoạn \(\left[ {1;{e^3}} \right]\) là \(M = \frac{m}{{{e^n}}}\), trong đó m, n là các số tự nhiên. Tính \(S = {m^2} + 2{n^3}\)
Câu 3:
Gọi I là tâm đối xứng của đồ thị hàm số \(y = \frac{{2x - 3}}{{x + 2}}\). Tìm tọa độ điểm I.
Câu 4:
Tìm giá trị của tham số m để hàm số \(y = {x^3} + 3x + m\) có giá trị nhỏ nhất trên đoạn \(\left[ { - 1;1} \right]\) bằng 0.
Câu 5:
Tìm tập xác định D của hàm số \(y = {\log _2}\left( {{x^2} - 2x - 3} \right)\)
Câu 6:
Cho các số thực dương x, y, z thỏa mãn \(xy = {10^a},\,\,yz = {10^{2b}},\,\,xz = {10^{3c}}\,\,\left( {\,a,\,b,\,c \in \mathbb{R}} \right)\). Tính giá trị của biểu thức \(P = \log x + \log y + \log z\) theo a, b, c.
Câu 7:
Cho lăng trụ đều ABC.A’B’C’ có cạnh đáy bằng a và cạnh bên là \(\frac{{3a}}{2}\). Tính số đo góc tạo bởi hai mặt phẳng \(\left( {A'BC} \right)\) và \(\left( {ABC} \right)\)
về câu hỏi!