Câu hỏi:

22/02/2023 360 Lưu

Tâm tất cả các mặt của một hình lập phương lá các đỉnh của hình nào trong các hình sau đây?

A. Lục giác đều.
B. Bát diện đều.
C. Tứ diện đều.        
D. Ngũ giác đều.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án B

Cách giải:

Tâm tất cả các mặt của một hình lập phương là các đỉnh của hình bát diện đều.

Câu 9: Đáp án B

Phương pháp:

\(\left( {{{\log }_a}f\left( x \right)} \right)' = \frac{{\left( {f\left( x \right)} \right)'}}{{f\left( x \right).\ln a}}\)

Cách giải:

\(y = {\log _2}\left( {{e^x} + 1} \right) \Rightarrow y' = \frac{{\left( {{e^x} + 1} \right)'}}{{\left( {{e^x} + 1} \right).\ln 2}} = \frac{{{e^x}}}{{\left( {{e^x} + 1} \right).\ln 2}}\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A. \(D = \left( { - \infty ; - 1} \right) \cup \left( {3; + \infty } \right)\)

B. \(D = \left( { - \infty ; - 1} \right] \cup \left[ {3; + \infty } \right)\)

C. \(D = \left[ { - 1;3} \right]\)

D. \(D = \left( { - 1;3} \right)\)

Lời giải

Đáp án A

Phương pháp:

\({\log _a}f\left( x \right)\) xác định \( \Leftrightarrow f\left( x \right) > 0\)

Cách giải:

ĐKXĐ: \({x^2} - 2x - 3 > 0 \Leftrightarrow x \in \left( { - \infty ; - 1} \right) \cup \left( {3; + \infty } \right)\)

Vậy TXĐ: \(\left( { - \infty ; - 1} \right) \cup \left( {3; + \infty } \right)\)

Lời giải

Đáp án A

Hình nón (N) có thể tích bằng \(4\pi \) và chiều cao là 3. Tính bán kính đường tròn đáy của (ảnh 1)

Phương pháp:

Thể tích khối nón: \(V = \frac{1}{3}\pi {r^2}h\)

Cách giải:

\(V = \frac{1}{3}\pi {r^2}h \Rightarrow 4\pi = \frac{1}{3}\pi {r^2}.3 \Rightarrow {r^2} = 4 \Rightarrow r = 2\)

Câu 3

A. \(I\left( { - 2;2} \right)\)
B. \(I\left( { - 2;1} \right)\)
C. \(I\left( {1;2} \right)\)

D. \(I\left( { - 2; - \frac{3}{2}} \right)\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP