Câu hỏi:

22/02/2023 396 Lưu

Tìm đạo hàm của hàm số \(y = {\log _2}\left( {{e^x} + 1} \right)\)

A. \(y' = \frac{{{2^x}\ln 2}}{{{2^x} + 1}}\)
B. \(y' = \frac{{{e^x}}}{{\left( {{e^x} + 1} \right)\ln 2}}\)
C. \(y' = \frac{{{2^x}}}{{\left( {{2^x} + 1} \right)\ln 2}}\)

D. \(y' = \frac{{{e^x}\ln 2}}{{{e^x} + 1}}\)

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án A

Phương pháp:

Sử dụng công thức \({a^{{{\log }_a}x}} = a;\,\,\,{\log _{{a^m}}}{x^n} = \frac{n}{m}{\log _a}x\,\,\,\left( {0 < a \ne 1;\,\,x > 0} \right)\)

Cách giải:

\(T = {a^{{{\log }_{{a^2}}}4}} = {a^{\frac{1}{2}{{\log }_a}4}} = {\left( {a{{\log }_a}4} \right)^{\frac{1}{2}}} = {4^{\frac{1}{2}}} = \sqrt 4 = 2\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A. \(D = \left( { - \infty ; - 1} \right) \cup \left( {3; + \infty } \right)\)

B. \(D = \left( { - \infty ; - 1} \right] \cup \left[ {3; + \infty } \right)\)

C. \(D = \left[ { - 1;3} \right]\)

D. \(D = \left( { - 1;3} \right)\)

Lời giải

Đáp án A

Phương pháp:

\({\log _a}f\left( x \right)\) xác định \( \Leftrightarrow f\left( x \right) > 0\)

Cách giải:

ĐKXĐ: \({x^2} - 2x - 3 > 0 \Leftrightarrow x \in \left( { - \infty ; - 1} \right) \cup \left( {3; + \infty } \right)\)

Vậy TXĐ: \(\left( { - \infty ; - 1} \right) \cup \left( {3; + \infty } \right)\)

Lời giải

Đáp án A

Hình nón (N) có thể tích bằng \(4\pi \) và chiều cao là 3. Tính bán kính đường tròn đáy của (ảnh 1)

Phương pháp:

Thể tích khối nón: \(V = \frac{1}{3}\pi {r^2}h\)

Cách giải:

\(V = \frac{1}{3}\pi {r^2}h \Rightarrow 4\pi = \frac{1}{3}\pi {r^2}.3 \Rightarrow {r^2} = 4 \Rightarrow r = 2\)

Câu 3

A. \(I\left( { - 2;2} \right)\)
B. \(I\left( { - 2;1} \right)\)
C. \(I\left( {1;2} \right)\)

D. \(I\left( { - 2; - \frac{3}{2}} \right)\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP