Câu hỏi:
22/02/2023 110Sale Tết giảm 50% 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 49k/cuốn).
Quảng cáo
Trả lời:
Đáp án C
Phương pháp:
+) Xác định trục của mặt đáy (đường thẳng đi qua tâm đáy và vuông góc với đáy).
+) Xác định đường trung trực của một mặt bên.
+) Xác định giao điểm của hai đường thẳng trên.
Cách giải:
Gọi E, F, I lần lượt là trung điểm của BC, CD, AD; G là trọng tâm tam giác BCD; O là giao điểm của AG và EI.
* Ta chứng minh: O là tâm mặt cầu ngoại tiếp tứ diện ABCD:
Thật vậy:
Do tam giác BCD đều, G là trọng tâm \( \Rightarrow \) là tâm đường tròn ngoại tiếp G
Do tứ diện ABCD đều \( \Rightarrow AG \bot \left( {BCD} \right)\)
Điểm \(O \in AG \Rightarrow OB = OC = OD\,\,\left( 1 \right)\)
Do \(AE = DE \Rightarrow \Delta AED\) cân tại E \( \Rightarrow \) EI là trung trực của AD \( \Rightarrow OA = OD\,\,\left( 2 \right)\)
Từ (1), (2) \( \Rightarrow \) O là tâm mặt cầu ngoại tiếp tứ diện ABCD.
* Tính bán kính đường tròn ngoại tiếp tứ diện ABCD:
\(\Delta BCD\) đều, cạnh bằng a \( \Rightarrow ED = \frac{{a\sqrt 3 }}{2} \Rightarrow EG = \frac{1}{3}.\frac{{a\sqrt 3 }}{2} = \frac{{a\sqrt 3 }}{6},\,\,\,GD = \frac{2}{3}.\frac{{a\sqrt 3 }}{2} = \frac{{a\sqrt 3 }}{3}\)
\(\Delta EID\) vuông tại I \( \Rightarrow EI = \sqrt {E{D^2} - I{D^2}} = \sqrt {\frac{3}{4}{a^2} - \frac{1}{4}{a^2}} = \frac{1}{{\sqrt 2 }}a\)
\(\Delta OEG\) đồng dạng \(\Delta DEI \Rightarrow \frac{{OG}}{{ID}} = \frac{{EG}}{{EI}} \Leftrightarrow \frac{{OG}}{{\frac{a}{2}}} = \frac{{\frac{{a\sqrt 3 }}{3}}}{{\frac{1}{{\sqrt 2 }}a}} = \frac{{\sqrt 6 }}{3} \Rightarrow OG = \frac{a}{{\sqrt 6 }}\)
\(\Delta OGD\) vuông tại G \( \Rightarrow OD = \sqrt {O{G^2} + G{D^2}} = \sqrt {\frac{1}{6}{a^2} + \frac{1}{3}{a^2}} = \frac{a}{{\sqrt 2 }} = \frac{{a\sqrt 2 }}{4}\)
Vậy, bán kính đường tròn ngoại tiếp tứ diện ABCD là \(R = \frac{{a\sqrt 2 }}{4}\)
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Hình nón \(\left( N \right)\) có thể tích bằng \(4\pi \) và chiều cao là 3. Tính bán kính đường tròn đáy của khối nón \(\left( N \right)\)
Câu 2:
Gọi I là tâm đối xứng của đồ thị hàm số \(y = \frac{{2x - 3}}{{x + 2}}\). Tìm tọa độ điểm I.
Câu 3:
Biết rằng GTLN của hàm số \(y = \frac{{{{\ln }^2}x}}{x}\) trên đoạn \(\left[ {1;{e^3}} \right]\) là \(M = \frac{m}{{{e^n}}}\), trong đó m, n là các số tự nhiên. Tính \(S = {m^2} + 2{n^3}\)
Câu 4:
Tìm tập xác định D của hàm số \(y = {\log _2}\left( {{x^2} - 2x - 3} \right)\)
Câu 5:
Tìm giá trị của tham số m để hàm số \(y = {x^3} + 3x + m\) có giá trị nhỏ nhất trên đoạn \(\left[ { - 1;1} \right]\) bằng 0.
Câu 6:
Cho các số thực dương x, y, z thỏa mãn \(xy = {10^a},\,\,yz = {10^{2b}},\,\,xz = {10^{3c}}\,\,\left( {\,a,\,b,\,c \in \mathbb{R}} \right)\). Tính giá trị của biểu thức \(P = \log x + \log y + \log z\) theo a, b, c.
Câu 7:
Cho lăng trụ đều ABC.A’B’C’ có cạnh đáy bằng a và cạnh bên là \(\frac{{3a}}{2}\). Tính số đo góc tạo bởi hai mặt phẳng \(\left( {A'BC} \right)\) và \(\left( {ABC} \right)\)
5920 câu Trắc nghiệm tổng hợp môn Toán 2023 có đáp án (Phần 1)
56 câu Chuyên đề Toán 12 Bài 2: Lôgarit có đáp án
79 câu Chuyên đề Toán 12 Bài 2 Dạng 1: Xác định vectơ pháp tuyến và viết phương trình mặt phẳng có đáp án
87 câu Chuyên đề Toán 12 Bài 3 Dạng 1: Xác định vectơ pháp tuyến và viết phương trình mặt phẳng có đáp án
7881 câu Trắc nghiệm tổng hợp môn Toán 2023 cực hay có đáp án ( Phần 1)
135 câu Bài tập Hình học mặt nón, mặt trụ, mặt cầu cực hay có lời giải (P1)
124 câu Trắc nghiệm Ôn tập Toán 12 Chương 3 Hình học có đáp án (Phần 1)
80 câu Bài tập Hình học Khối đa diện có lời giải chi tiết (P1)
về câu hỏi!