Câu hỏi:

22/02/2023 131

Tính bán kính R của mặt cầu ngoại tiếp hình tứ diện đều cạnh a.

Đáp án chính xác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án C

Phương pháp:

+) Xác định trục của mặt đáy (đường thẳng đi qua tâm đáy và vuông góc với đáy).

+) Xác định đường trung trực của một mặt bên.

Tính bán kính R của mặt cầu ngoại tiếp hình tứ diện đều cạnh a. A. R = a căn bậc hai 6 / 4 (ảnh 1)

+) Xác định giao điểm của hai đường thẳng trên.

Cách giải:

Gọi E, F, I lần lượt là trung điểm của BC, CD, AD; G là trọng tâm tam giác BCD; O là giao điểm của AG và EI.

* Ta chứng minh: O là tâm mặt cầu ngoại tiếp tứ diện ABCD:

Thật vậy:

Do tam giác BCD đều, G là trọng tâm \( \Rightarrow \) là tâm đường tròn ngoại tiếp G

Do tứ diện ABCD đều \( \Rightarrow AG \bot \left( {BCD} \right)\)

Điểm \(O \in AG \Rightarrow OB = OC = OD\,\,\left( 1 \right)\)

Do \(AE = DE \Rightarrow \Delta AED\) cân tại E \( \Rightarrow \) EI là trung trực của AD \( \Rightarrow OA = OD\,\,\left( 2 \right)\)

Từ (1), (2) \( \Rightarrow \) O là tâm mặt cầu ngoại tiếp tứ diện ABCD.

* Tính bán kính đường tròn ngoại tiếp tứ diện ABCD:

\(\Delta BCD\) đều, cạnh bằng a \( \Rightarrow ED = \frac{{a\sqrt 3 }}{2} \Rightarrow EG = \frac{1}{3}.\frac{{a\sqrt 3 }}{2} = \frac{{a\sqrt 3 }}{6},\,\,\,GD = \frac{2}{3}.\frac{{a\sqrt 3 }}{2} = \frac{{a\sqrt 3 }}{3}\)

\(\Delta EID\) vuông tại I \( \Rightarrow EI = \sqrt {E{D^2} - I{D^2}} = \sqrt {\frac{3}{4}{a^2} - \frac{1}{4}{a^2}} = \frac{1}{{\sqrt 2 }}a\)

\(\Delta OEG\) đồng dạng \(\Delta DEI \Rightarrow \frac{{OG}}{{ID}} = \frac{{EG}}{{EI}} \Leftrightarrow \frac{{OG}}{{\frac{a}{2}}} = \frac{{\frac{{a\sqrt 3 }}{3}}}{{\frac{1}{{\sqrt 2 }}a}} = \frac{{\sqrt 6 }}{3} \Rightarrow OG = \frac{a}{{\sqrt 6 }}\)

\(\Delta OGD\) vuông tại G \( \Rightarrow OD = \sqrt {O{G^2} + G{D^2}} = \sqrt {\frac{1}{6}{a^2} + \frac{1}{3}{a^2}} = \frac{a}{{\sqrt 2 }} = \frac{{a\sqrt 2 }}{4}\)

Vậy, bán kính đường tròn ngoại tiếp tứ diện ABCD là \(R = \frac{{a\sqrt 2 }}{4}\)

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Tìm tập xác định D của hàm số \(y = {\log _2}\left( {{x^2} - 2x - 3} \right)\)

Xem đáp án » 22/02/2023 13,944

Câu 2:

Hình nón \(\left( N \right)\) có thể tích bằng \(4\pi \) và chiều cao là 3. Tính bán kính đường tròn đáy của khối nón \(\left( N \right)\)

Xem đáp án » 22/02/2023 11,807

Câu 3:

Gọi I là tâm đối xứng của đồ thị hàm số \(y = \frac{{2x - 3}}{{x + 2}}\). Tìm tọa độ điểm I.

Xem đáp án » 22/02/2023 7,695

Câu 4:

Cho các số thực dương x, y, z thỏa mãn \(xy = {10^a},\,\,yz = {10^{2b}},\,\,xz = {10^{3c}}\,\,\left( {\,a,\,b,\,c \in \mathbb{R}} \right)\). Tính giá trị của biểu thức \(P = \log x + \log y + \log z\) theo a, b, c.

Xem đáp án » 22/02/2023 6,426

Câu 5:

Biết rằng GTLN của hàm số \(y = \frac{{{{\ln }^2}x}}{x}\) trên đoạn \(\left[ {1;{e^3}} \right]\)\(M = \frac{m}{{{e^n}}}\), trong đó m, n là các số tự nhiên. Tính \(S = {m^2} + 2{n^3}\)

Xem đáp án » 22/02/2023 6,322

Câu 6:

Tìm giá trị của tham số m để hàm số \(y = {x^3} + 3x + m\) có giá trị nhỏ nhất trên đoạn \(\left[ { - 1;1} \right]\) bằng 0.

Xem đáp án » 22/02/2023 4,342

Câu 7:

Cho hàm số \(y = {x^3} - x - 1\) có đồ thị \(\left( C \right)\). Viết phương trình tiếp tuyến của \(\left( C \right)\) tại giao điểm của \(\left( C \right)\) với trục tung.

Xem đáp án » 22/02/2023 3,492
Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua