Câu hỏi:
22/02/2023 775Cho hàm số \(y = \frac{{2x - 1}}{{x + 1}}\) có đồ thị \(\left( H \right)\). Có bao nhiêu điểm trên đồ thị \(\left( H \right)\) thỏa mãn cách đều 2 tiệm cận của đồ thị hàm số?
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Đáp án B
Phương pháp:
Đồ thị hàm số \(y = \frac{{ax + b}}{{cx + d}},\,\left( {ad - bc \ne 0,\,c \ne 0} \right)\) có TCN là\(y = \frac{a}{c}\) và TCĐ: \(x = - \frac{d}{c}\)
Cách giải:
Đồ thị hàm số \(y = \frac{{2x - 1}}{{x + 1}}\) có TCN là \(y = 2\) và TCĐ: \(x = 1\)
Giả sử \(H\left( {{x_0};{y_0}} \right) \in \left( H \right) \Rightarrow {y_0} = \frac{{2{x_0} - 1}}{{{x_0} + 1}} \Rightarrow H\left( {{x_0};\frac{{2{x_0} - 1}}{{{x_0} + 1}}} \right)\)
Khoảng cách từ \(H\left( {{x_0};\frac{{2{x_0} - 1}}{{{x_0} + 1}}} \right)\) đến đường thẳng \(y = 2\) là: \(\left| {\frac{{2{x_0} - 1}}{{{x_0} + 1}} - 2} \right| = \left| {\frac{{ - 3}}{{{x_0} + 1}}} \right| = \frac{3}{{\left| {{x_0} + 1} \right|}}\)
Khoảng cách từ \(H\left( {{x_0};\frac{{2{x_0} - 1}}{{{x_0} + 1}}} \right)\) đến đường thẳng \(x = - 1\) là \(\left| {{x_0} + 1} \right|\)
Theo đề bài, ta có: \(\frac{3}{{\left| {{x_0} + 1} \right|}} = \left| {{x_0} + 1} \right| \Leftrightarrow {\left| {{x_0} + 1} \right|^2} = 3 \Leftrightarrow \left| {{x_0} + 1} \right| = \sqrt 3 \Leftrightarrow {x_0} = - 1 \pm \sqrt 3 \)
\( \Rightarrow \) Có 2 điểm H thỏa mãn.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Hình nón \(\left( N \right)\) có thể tích bằng \(4\pi \) và chiều cao là 3. Tính bán kính đường tròn đáy của khối nón \(\left( N \right)\)
Câu 2:
Biết rằng GTLN của hàm số \(y = \frac{{{{\ln }^2}x}}{x}\) trên đoạn \(\left[ {1;{e^3}} \right]\) là \(M = \frac{m}{{{e^n}}}\), trong đó m, n là các số tự nhiên. Tính \(S = {m^2} + 2{n^3}\)
Câu 3:
Gọi I là tâm đối xứng của đồ thị hàm số \(y = \frac{{2x - 3}}{{x + 2}}\). Tìm tọa độ điểm I.
Câu 4:
Tìm giá trị của tham số m để hàm số \(y = {x^3} + 3x + m\) có giá trị nhỏ nhất trên đoạn \(\left[ { - 1;1} \right]\) bằng 0.
Câu 5:
Tìm tập xác định D của hàm số \(y = {\log _2}\left( {{x^2} - 2x - 3} \right)\)
Câu 6:
Cho các số thực dương x, y, z thỏa mãn \(xy = {10^a},\,\,yz = {10^{2b}},\,\,xz = {10^{3c}}\,\,\left( {\,a,\,b,\,c \in \mathbb{R}} \right)\). Tính giá trị của biểu thức \(P = \log x + \log y + \log z\) theo a, b, c.
Câu 7:
Cho lăng trụ đều ABC.A’B’C’ có cạnh đáy bằng a và cạnh bên là \(\frac{{3a}}{2}\). Tính số đo góc tạo bởi hai mặt phẳng \(\left( {A'BC} \right)\) và \(\left( {ABC} \right)\)
về câu hỏi!