Câu hỏi:
22/02/2023 206Cho một khối lăng trụ tam giác đều có tất cả các cạnh bằng a. Tính thể tích của khối trụ ngoại tiếp lăng trụ đã cho.
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Đáp án A
Phương pháp:
Thể tích khối trụ: \(V = \pi {r^2}h\)
Cách giải:
\(\Delta ABC\) đều cạnh a \( \Rightarrow \) Bán kính đường tròn ngoại tiếp tam giác ABC: \(r = \frac{2}{3}.\frac{{a\sqrt 3 }}{2} = \frac{a}{{\sqrt 3 }}\)CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Hình nón \(\left( N \right)\) có thể tích bằng \(4\pi \) và chiều cao là 3. Tính bán kính đường tròn đáy của khối nón \(\left( N \right)\)
Câu 2:
Biết rằng GTLN của hàm số \(y = \frac{{{{\ln }^2}x}}{x}\) trên đoạn \(\left[ {1;{e^3}} \right]\) là \(M = \frac{m}{{{e^n}}}\), trong đó m, n là các số tự nhiên. Tính \(S = {m^2} + 2{n^3}\)
Câu 3:
Gọi I là tâm đối xứng của đồ thị hàm số \(y = \frac{{2x - 3}}{{x + 2}}\). Tìm tọa độ điểm I.
Câu 4:
Tìm giá trị của tham số m để hàm số \(y = {x^3} + 3x + m\) có giá trị nhỏ nhất trên đoạn \(\left[ { - 1;1} \right]\) bằng 0.
Câu 5:
Tìm tập xác định D của hàm số \(y = {\log _2}\left( {{x^2} - 2x - 3} \right)\)
Câu 6:
Cho các số thực dương x, y, z thỏa mãn \(xy = {10^a},\,\,yz = {10^{2b}},\,\,xz = {10^{3c}}\,\,\left( {\,a,\,b,\,c \in \mathbb{R}} \right)\). Tính giá trị của biểu thức \(P = \log x + \log y + \log z\) theo a, b, c.
Câu 7:
Cho lăng trụ đều ABC.A’B’C’ có cạnh đáy bằng a và cạnh bên là \(\frac{{3a}}{2}\). Tính số đo góc tạo bởi hai mặt phẳng \(\left( {A'BC} \right)\) và \(\left( {ABC} \right)\)
về câu hỏi!