Câu hỏi:
22/02/2023 933Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a. Tam giác đều SAB và nằm trong mặt phẳng vuông góc với đáy. Tính bán kính của mặt cầu ngoại tiếp hình chóp.
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Đáp án A
Phương pháp:
Xác định tâm mặt cầu ngoại tiếp hình chóp
Tính bán kính mặt cầu.
Cách giải:
Gọi M là trung điểm của AB; G là trọng tâm tam giác SAB; O là tâm của
hình vuông ABCD
Do tam giác SAB đều và nằm trong mặt phẳng vuông góc với đáy nên \(SM \bot \left( {ABCD} \right)\)
\( \Rightarrow SMO = {90^0}\). Dựng hình chữ nhật GMOI. Khi đó:
\(OI//GM \Rightarrow OI \bot \left( {ABCD} \right) \Rightarrow IA = IB = IC = ID\,\,\left( 1 \right)\)
Mặt khác \(GI//MO\), mà \(MO \bot AB,\,\,MO \bot SM \Rightarrow MO \bot \left( {SAB} \right)\)
\( \Rightarrow GI \bot \left( {SAB} \right) \Rightarrow IA = IS = IB\,\,\,\left( 2 \right)\)
Từ (1), (2) \( \Rightarrow \) I là tâm mặt cầu ngoại tiếp hình chóp S.ABCD
Ta có: G là trọng tâm tam giác đều SAB
\( \Rightarrow GM = \frac{1}{3}.SM = \frac{1}{3}.\frac{{a\sqrt 3 }}{2} = \frac{{a\sqrt 3 }}{6} \Rightarrow OI = \frac{{a\sqrt 3 }}{6}\)
ABCD là hình vuông cạnh a \( \Rightarrow OB = \frac{{BD}}{2} = \frac{{a\sqrt 2 }}{2}\)
GMOI là hình chữ nhật
\( \Rightarrow IB = \sqrt {O{I^2} + O{B^2}} = \sqrt {\frac{1}{{12}}{a^2} + \frac{1}{2}{a^2}} = \sqrt {\frac{7}{{12}}} a = \frac{{a\sqrt {21} }}{6}\)
Vậy, bán kính của mặt cầu ngoại tiếp hình chóp là: \(\frac{{a\sqrt {21} }}{6}\)
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Hình nón \(\left( N \right)\) có thể tích bằng \(4\pi \) và chiều cao là 3. Tính bán kính đường tròn đáy của khối nón \(\left( N \right)\)
Câu 2:
Gọi I là tâm đối xứng của đồ thị hàm số \(y = \frac{{2x - 3}}{{x + 2}}\). Tìm tọa độ điểm I.
Câu 3:
Biết rằng GTLN của hàm số \(y = \frac{{{{\ln }^2}x}}{x}\) trên đoạn \(\left[ {1;{e^3}} \right]\) là \(M = \frac{m}{{{e^n}}}\), trong đó m, n là các số tự nhiên. Tính \(S = {m^2} + 2{n^3}\)
Câu 4:
Tìm giá trị của tham số m để hàm số \(y = {x^3} + 3x + m\) có giá trị nhỏ nhất trên đoạn \(\left[ { - 1;1} \right]\) bằng 0.
Câu 5:
Tìm tập xác định D của hàm số \(y = {\log _2}\left( {{x^2} - 2x - 3} \right)\)
Câu 6:
Cho các số thực dương x, y, z thỏa mãn \(xy = {10^a},\,\,yz = {10^{2b}},\,\,xz = {10^{3c}}\,\,\left( {\,a,\,b,\,c \in \mathbb{R}} \right)\). Tính giá trị của biểu thức \(P = \log x + \log y + \log z\) theo a, b, c.
Câu 7:
Cho lăng trụ đều ABC.A’B’C’ có cạnh đáy bằng a và cạnh bên là \(\frac{{3a}}{2}\). Tính số đo góc tạo bởi hai mặt phẳng \(\left( {A'BC} \right)\) và \(\left( {ABC} \right)\)
53 câu Bài tập về Tính đơn điệu của hàm số có lời giải (P1)
7881 câu Trắc nghiệm tổng hợp môn Toán 2023 cực hay có đáp án ( Phần 1)
200 câu trắc nghiệm Ứng dụng đạo hàm để khảo sát hàm số nâng cao (P1)
120 câu Bài tập Cực trị hàm số cơ bản, nâng cao có lời giải (P1)
5920 câu Trắc nghiệm tổng hợp môn Toán 2023 có đáp án (Phần 1)
250 câu trắc nghiệm Ứng dụng đạo hàm để khảo sát hàm số cơ bản (P1)
20 câu Trắc nghiệm Phương trình đường thẳng trong không gian có đáp án (Nhận biết)
80 câu Trắc nghiệm Tích phân có đáp án (Phần 1)
về câu hỏi!