Câu hỏi:

22/02/2023 974

Cho khối nón đỉnh O trục OI, bán kính đáy bằng a và chiều cao bằng \(\frac{a}{2}\). Mặt phẳng \(\left( P \right)\) thay đổi luôn đi qua O và cắt hình nón theo thiết diện là tam giác AOB. Diện tích lớn nhất của tam giác AOB là:

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án D

Phương pháp:

Gọi M là trung điểm của AB \( \Rightarrow SM \bot AB \Rightarrow {S_{\Delta SAB}} = \frac{1}{2}SM.AB\)

Cách giải:

Cho khối nón đỉnh O trục OI, bán kính đáy bằng a và chiều cao bằng a/2. Mặt phẳng (P) (ảnh 1)

Gọi M là trung điểm của AB và độ dài đoạn OM là x

\(\Delta SOM\) vuông tại O \( \Rightarrow SM = \sqrt {S{O^2} + O{M^2}} = \sqrt {\frac{{{a^2}}}{4} + {x^2}} \)

\(\Delta BOM\) vuông tại M \( \Rightarrow BM = \sqrt {O{B^2} - O{M^2}} = \sqrt {{a^2} - {x^2}} \Rightarrow AB = 2\sqrt {{a^2} - {x^2}} \)

Ta có: \(AB \bot OM,\,\,AB \bot SO \Rightarrow AB \bot \left( {SOM} \right) \Rightarrow AB \bot SM\)

\( \Rightarrow {S_{\Delta SAB}} = \frac{1}{2}.SM.AB = \frac{1}{2}.\sqrt {\frac{{{a^2}}}{4} + {x^2}} .2\sqrt {{a^2} - {x^2}} = \sqrt {\frac{{{a^2}}}{4} + {x^2}} .\sqrt {{a^2} - {x^2}} \le \frac{{\left( {\frac{{{a^2}}}{4} + {x^2}} \right) + \left( {{a^2} - {x^2}} \right)}}{2} = \frac{{5{a^2}}}{8}\)

Diện tích lớn nhất của tam giác AOB là: \(\frac{{5{a^2}}}{8}\)

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Tìm tập xác định D của hàm số \(y = {\log _2}\left( {{x^2} - 2x - 3} \right)\)

Lời giải

Đáp án A

Phương pháp:

\({\log _a}f\left( x \right)\) xác định \( \Leftrightarrow f\left( x \right) > 0\)

Cách giải:

ĐKXĐ: \({x^2} - 2x - 3 > 0 \Leftrightarrow x \in \left( { - \infty ; - 1} \right) \cup \left( {3; + \infty } \right)\)

Vậy TXĐ: \(\left( { - \infty ; - 1} \right) \cup \left( {3; + \infty } \right)\)

Lời giải

Đáp án A

Hình nón (N) có thể tích bằng \(4\pi \) và chiều cao là 3. Tính bán kính đường tròn đáy của (ảnh 1)

Phương pháp:

Thể tích khối nón: \(V = \frac{1}{3}\pi {r^2}h\)

Cách giải:

\(V = \frac{1}{3}\pi {r^2}h \Rightarrow 4\pi = \frac{1}{3}\pi {r^2}.3 \Rightarrow {r^2} = 4 \Rightarrow r = 2\)

Câu 3

Gọi I là tâm đối xứng của đồ thị hàm số \(y = \frac{{2x - 3}}{{x + 2}}\). Tìm tọa độ điểm I.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay