Câu hỏi:

22/02/2023 258

Cho hàm số \(y = \frac{x}{{x - 1}}\) có đồ thị \(\left( C \right)\). Tìm các giá trị của tham số m để đường thẳng \(d:y = - x + m\) cắt đồ thị \(\left( C \right)\) tại hai điểm phân biệt.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án A

Phương pháp:

Xét phương trình hoành độ giao điểm, xác định m để phương trình có 2 nghiệm phân biệt.

Cách giải:

Phương trình hoành độ giao điểm của \(\left( C \right)\)\(d:y = - x + m\)\(\frac{x}{{x - 1}} = - x + m,\,\,\left( {x \ne 1} \right)\)

\( \Leftrightarrow x = \left( {x - 1} \right)\left( { - x + m} \right) \Leftrightarrow x = - {x^2} + mx + x - m \Leftrightarrow {x^2} - mx + m = 0\,\,\left( * \right)\)

Để đường thẳng \(d:y = - x + m\) cắt đồ thị \(\left( C \right)\) tại hai điểm phân biệt thì phương trình (*) có 2 nghiệm phân biệt khác 1 \( \Leftrightarrow \left\{ \begin{array}{l}\Delta > 0\\{1^2} - m.1 + m \ne 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{m^2} - 4m > 0\\1 \ne 0\end{array} \right. \Leftrightarrow {m^2} - 4m > 0 \Leftrightarrow \left[ \begin{array}{l}m > 4\\m < 0\end{array} \right.\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Lời giải

Đáp án A

Phương pháp:

\({\log _a}f\left( x \right)\) xác định \( \Leftrightarrow f\left( x \right) > 0\)

Cách giải:

ĐKXĐ: \({x^2} - 2x - 3 > 0 \Leftrightarrow x \in \left( { - \infty ; - 1} \right) \cup \left( {3; + \infty } \right)\)

Vậy TXĐ: \(\left( { - \infty ; - 1} \right) \cup \left( {3; + \infty } \right)\)

Lời giải

Đáp án A

Hình nón (N) có thể tích bằng \(4\pi \) và chiều cao là 3. Tính bán kính đường tròn đáy của (ảnh 1)

Phương pháp:

Thể tích khối nón: \(V = \frac{1}{3}\pi {r^2}h\)

Cách giải:

\(V = \frac{1}{3}\pi {r^2}h \Rightarrow 4\pi = \frac{1}{3}\pi {r^2}.3 \Rightarrow {r^2} = 4 \Rightarrow r = 2\)

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP