Câu hỏi:
22/02/2023 175
Cho hàm số \(y = {x^4} - 2m{x^2} + 1\) có đồ thị \(\left( {{C_m}} \right)\). Tìm giá trị của m để đồ thị \(\left( {{C_m}} \right)\) có 3 điểm cực trị, đồng thời 3 điểm cực trị đó tạo thành một tam giác có diện tích bằng 4.
Cho hàm số \(y = {x^4} - 2m{x^2} + 1\) có đồ thị \(\left( {{C_m}} \right)\). Tìm giá trị của m để đồ thị \(\left( {{C_m}} \right)\) có 3 điểm cực trị, đồng thời 3 điểm cực trị đó tạo thành một tam giác có diện tích bằng 4.
Quảng cáo
Trả lời:
Đáp án B
Phương pháp:
+) Giải phương trình \(y' = 0\) xác định các điểm cực trị của đồ thị hàm số.
+) Ba điểm cực trị của đồ thị hàm số tạo thành tam giác cân. Tính diện tích tam giác cân đó.
Cách giải:
\(y = {x^4} - 2m{x^2} + 1 \Rightarrow y' = 4{x^3} - 4mx;\,\,\,y' = 0 \Leftrightarrow \left[ \begin{array}{l}x = 0\\{x^2} = m\end{array} \right.\)
Để hàm số có 3 cực trị thì \(m > 0\). Khi đó, hàm số đạt cực trị tại 3 điểm \({x_1} = 0,\,\,{x_2} = - \sqrt m ,\,\,{x_3} = \sqrt m \)
Các điểm cực trị: \(A\left( {0;1} \right),\,\,B\left( { - \sqrt m ; - {m^2} + 1} \right),\,\,C\left( {\sqrt m ; - {m^2} + 1} \right)\)
Dễ dàng kiểm tra được: tam giác ABC cân tại A với mọi \(m > 0\)
Ta có: \(BC = 2\sqrt m \)
Gọi H là trung điểm của BC \( \Rightarrow H\left( {0; - {m^2} + 1} \right) \Rightarrow AH = {m^2}\)
Diện tích tam giác ABC: \(S = \frac{1}{2}AH.BC = \frac{1}{2}.{m^2}.2\sqrt m = 4 \Rightarrow {m^2}\sqrt m = 4 \Leftrightarrow {m^5} = 16 \Leftrightarrow m = \sqrt[5]{{16}}\)
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp án A
Phương pháp:
\({\log _a}f\left( x \right)\) xác định \( \Leftrightarrow f\left( x \right) > 0\)
Cách giải:
ĐKXĐ: \({x^2} - 2x - 3 > 0 \Leftrightarrow x \in \left( { - \infty ; - 1} \right) \cup \left( {3; + \infty } \right)\)
Vậy TXĐ: \(\left( { - \infty ; - 1} \right) \cup \left( {3; + \infty } \right)\)
Lời giải
Đáp án A

Phương pháp:
Thể tích khối nón: \(V = \frac{1}{3}\pi {r^2}h\)
Cách giải:
\(V = \frac{1}{3}\pi {r^2}h \Rightarrow 4\pi = \frac{1}{3}\pi {r^2}.3 \Rightarrow {r^2} = 4 \Rightarrow r = 2\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.