Câu hỏi:

22/02/2023 1,556

Viết phương trình tiếp tuyến với đồ thị hàm số \(y = \frac{{3x + 2}}{{x + 1}}\) biết tiếp tuyến song song với đường thẳng \(x - y + 2 = 0\).

Đáp án chính xác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án D

Phương pháp:

Phương trình tiếp tuyến của đồ thị hàm số \(y = f\left( x \right)\) tại điểm \(M\left( {{x_0};{y_0}} \right):\,y = f'\left( {{x_0}} \right)\left( {x - {x_0}} \right) + {y_0}\)

Cách giải:

Giả sử tiếp điểm là \(M\left( {{x_0};{y_0}} \right)\). Vì tiếp tuyến song song với đường thẳng \(x - y + 2 = 0\,\,\left( {hay\,\,y = x + 2} \right)\) nên \(y'\left( {{x_0}} \right) = 1\)

Ta có: \(y = \frac{{3x + 2}}{{x + 1}} \Rightarrow y' = \frac{1}{{{{\left( {x + 1} \right)}^2}}} \Rightarrow y'\left( {{x_0}} \right) = \frac{1}{{{{\left( {{x_0} + 1} \right)}^2}}} = 1 \Rightarrow {\left( {{x_0} + 1} \right)^2} \Leftrightarrow \left[ \begin{array}{l}{x_0} = 0\\{x_0} = - 2\end{array} \right.\)

+) \({x_0} = 0 \Rightarrow {y_0} = 2 \Rightarrow \) Phương trình tiếp tuyến: \(y = 1\left( {x - 0} \right) + 2 \Leftrightarrow y = x + 2\) (loại, do trùng với d)

+) \({x_0} = - 2 \Rightarrow {y_0} = 4 \Rightarrow \) Phương trình tiếp tuyến: \(y = 1\left( {x - \left( { - 2} \right)} \right) + 4 \Leftrightarrow y = x + 6\) (thỏa mãn).

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Tìm tập xác định D của hàm số \(y = {\log _2}\left( {{x^2} - 2x - 3} \right)\)

Xem đáp án » 22/02/2023 13,944

Câu 2:

Hình nón \(\left( N \right)\) có thể tích bằng \(4\pi \) và chiều cao là 3. Tính bán kính đường tròn đáy của khối nón \(\left( N \right)\)

Xem đáp án » 22/02/2023 11,807

Câu 3:

Gọi I là tâm đối xứng của đồ thị hàm số \(y = \frac{{2x - 3}}{{x + 2}}\). Tìm tọa độ điểm I.

Xem đáp án » 22/02/2023 7,695

Câu 4:

Cho các số thực dương x, y, z thỏa mãn \(xy = {10^a},\,\,yz = {10^{2b}},\,\,xz = {10^{3c}}\,\,\left( {\,a,\,b,\,c \in \mathbb{R}} \right)\). Tính giá trị của biểu thức \(P = \log x + \log y + \log z\) theo a, b, c.

Xem đáp án » 22/02/2023 6,426

Câu 5:

Biết rằng GTLN của hàm số \(y = \frac{{{{\ln }^2}x}}{x}\) trên đoạn \(\left[ {1;{e^3}} \right]\)\(M = \frac{m}{{{e^n}}}\), trong đó m, n là các số tự nhiên. Tính \(S = {m^2} + 2{n^3}\)

Xem đáp án » 22/02/2023 6,322

Câu 6:

Tìm giá trị của tham số m để hàm số \(y = {x^3} + 3x + m\) có giá trị nhỏ nhất trên đoạn \(\left[ { - 1;1} \right]\) bằng 0.

Xem đáp án » 22/02/2023 4,342

Câu 7:

Cho hàm số \(y = {x^3} - x - 1\) có đồ thị \(\left( C \right)\). Viết phương trình tiếp tuyến của \(\left( C \right)\) tại giao điểm của \(\left( C \right)\) với trục tung.

Xem đáp án » 22/02/2023 3,491
Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua