Câu hỏi:

22/02/2023 160

Số các giá trị nguyên của tham số m sao cho phương trình \(m\left( {\sqrt {1 - } x + \sqrt {1 + x} } \right) - 2\sqrt {1 - {x^2}} = 0\) có nghiệm là:

Đáp án chính xác

Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa... kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 70k).

Tổng ôn Toán-lý hóa Văn-sử-đia Tiếng anh & các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án D

Phương pháp:

Đặt \(\sqrt {1 - x} + \sqrt {1 + x} = t,\,\,t \in \left[ {1;\sqrt 2 } \right]\)

Cách giải:

Đặt \(\sqrt {1 - x} + \sqrt {1 + x} = t,\,\,t \in \left[ {1;\sqrt 2 } \right]\)

Khi đó, \({\left( {\sqrt {1 - x} + \sqrt {1 + x} } \right)^2} = {t^2} \Rightarrow 2\sqrt {1 - {x^2}} = {t^2} - 2\). Phương trình đã cho trở thành:

\(mt - \left( {{t^2} - 2} \right) = 0 \Leftrightarrow m = \frac{{{t^2} - 2}}{t} = t - \frac{2}{t},\,\,t \in \left[ {1;\sqrt 2 } \right]\)

Xét hàm số: \(y = t - \frac{2}{t},\,\,t \in \left[ {1;\sqrt 2 } \right] \Rightarrow y' = 1 + \frac{2}{{{t^2}}} > 0,\,\,\forall t \in \left[ {1;\sqrt 2 } \right]\)

\( \Rightarrow \mathop {\min }\limits_{\left[ {1;\sqrt 2 } \right]} = f\left( 1 \right) = - 1,\,\,\mathop {\max }\limits_{\left[ {1;\sqrt 2 } \right]} y = f\left( {\sqrt 2 } \right) = 0\)

Để phương trình đã cho có nghiệm thì \( - 1 \le m \le 0 \Rightarrow m \in \left\{ { - 1;0} \right\}\)

Vậy, có 2 giá trị nguyên của m thỏa mãn.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Hình nón \(\left( N \right)\) có thể tích bằng \(4\pi \) và chiều cao là 3. Tính bán kính đường tròn đáy của khối nón \(\left( N \right)\)

Xem đáp án » 22/02/2023 11,490

Câu 2:

Tìm tập xác định D của hàm số \(y = {\log _2}\left( {{x^2} - 2x - 3} \right)\)

Xem đáp án » 22/02/2023 7,357

Câu 3:

Gọi I là tâm đối xứng của đồ thị hàm số \(y = \frac{{2x - 3}}{{x + 2}}\). Tìm tọa độ điểm I.

Xem đáp án » 22/02/2023 6,745

Câu 4:

Biết rằng GTLN của hàm số \(y = \frac{{{{\ln }^2}x}}{x}\) trên đoạn \(\left[ {1;{e^3}} \right]\)\(M = \frac{m}{{{e^n}}}\), trong đó m, n là các số tự nhiên. Tính \(S = {m^2} + 2{n^3}\)

Xem đáp án » 22/02/2023 5,810

Câu 5:

Cho các số thực dương x, y, z thỏa mãn \(xy = {10^a},\,\,yz = {10^{2b}},\,\,xz = {10^{3c}}\,\,\left( {\,a,\,b,\,c \in \mathbb{R}} \right)\). Tính giá trị của biểu thức \(P = \log x + \log y + \log z\) theo a, b, c.

Xem đáp án » 22/02/2023 5,127

Câu 6:

Tìm giá trị của tham số m để hàm số \(y = {x^3} + 3x + m\) có giá trị nhỏ nhất trên đoạn \(\left[ { - 1;1} \right]\) bằng 0.

Xem đáp án » 22/02/2023 4,064

Câu 7:

Cho lăng trụ đều ABC.A’B’C’ có cạnh đáy bằng a và cạnh bên là \(\frac{{3a}}{2}\). Tính số đo góc tạo bởi hai mặt phẳng \(\left( {A'BC} \right)\)\(\left( {ABC} \right)\)

Xem đáp án » 22/02/2023 2,239

Bình luận


Bình luận