Câu hỏi:

22/02/2023 177

Số các giá trị nguyên của tham số m sao cho phương trình \(m\left( {\sqrt {1 - } x + \sqrt {1 + x} } \right) - 2\sqrt {1 - {x^2}} = 0\) có nghiệm là:

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án D

Phương pháp:

Đặt \(\sqrt {1 - x} + \sqrt {1 + x} = t,\,\,t \in \left[ {1;\sqrt 2 } \right]\)

Cách giải:

Đặt \(\sqrt {1 - x} + \sqrt {1 + x} = t,\,\,t \in \left[ {1;\sqrt 2 } \right]\)

Khi đó, \({\left( {\sqrt {1 - x} + \sqrt {1 + x} } \right)^2} = {t^2} \Rightarrow 2\sqrt {1 - {x^2}} = {t^2} - 2\). Phương trình đã cho trở thành:

\(mt - \left( {{t^2} - 2} \right) = 0 \Leftrightarrow m = \frac{{{t^2} - 2}}{t} = t - \frac{2}{t},\,\,t \in \left[ {1;\sqrt 2 } \right]\)

Xét hàm số: \(y = t - \frac{2}{t},\,\,t \in \left[ {1;\sqrt 2 } \right] \Rightarrow y' = 1 + \frac{2}{{{t^2}}} > 0,\,\,\forall t \in \left[ {1;\sqrt 2 } \right]\)

\( \Rightarrow \mathop {\min }\limits_{\left[ {1;\sqrt 2 } \right]} = f\left( 1 \right) = - 1,\,\,\mathop {\max }\limits_{\left[ {1;\sqrt 2 } \right]} y = f\left( {\sqrt 2 } \right) = 0\)

Để phương trình đã cho có nghiệm thì \( - 1 \le m \le 0 \Rightarrow m \in \left\{ { - 1;0} \right\}\)

Vậy, có 2 giá trị nguyên của m thỏa mãn.

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Tìm tập xác định D của hàm số \(y = {\log _2}\left( {{x^2} - 2x - 3} \right)\)

Xem đáp án » 22/02/2023 15,906

Câu 2:

Hình nón \(\left( N \right)\) có thể tích bằng \(4\pi \) và chiều cao là 3. Tính bán kính đường tròn đáy của khối nón \(\left( N \right)\)

Xem đáp án » 22/02/2023 11,979

Câu 3:

Gọi I là tâm đối xứng của đồ thị hàm số \(y = \frac{{2x - 3}}{{x + 2}}\). Tìm tọa độ điểm I.

Xem đáp án » 22/02/2023 8,271

Câu 4:

Cho các số thực dương x, y, z thỏa mãn \(xy = {10^a},\,\,yz = {10^{2b}},\,\,xz = {10^{3c}}\,\,\left( {\,a,\,b,\,c \in \mathbb{R}} \right)\). Tính giá trị của biểu thức \(P = \log x + \log y + \log z\) theo a, b, c.

Xem đáp án » 22/02/2023 6,644

Câu 5:

Biết rằng GTLN của hàm số \(y = \frac{{{{\ln }^2}x}}{x}\) trên đoạn \(\left[ {1;{e^3}} \right]\)\(M = \frac{m}{{{e^n}}}\), trong đó m, n là các số tự nhiên. Tính \(S = {m^2} + 2{n^3}\)

Xem đáp án » 22/02/2023 6,538

Câu 6:

Cho hàm số \(y = {x^3} - x - 1\) có đồ thị \(\left( C \right)\). Viết phương trình tiếp tuyến của \(\left( C \right)\) tại giao điểm của \(\left( C \right)\) với trục tung.

Xem đáp án » 22/02/2023 4,780

Câu 7:

Tìm giá trị của tham số m để hàm số \(y = {x^3} + 3x + m\) có giá trị nhỏ nhất trên đoạn \(\left[ { - 1;1} \right]\) bằng 0.

Xem đáp án » 22/02/2023 4,492
Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay