Câu hỏi:
23/02/2023 162Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Đáp án A
Phương pháp:
Nhận biết dạng của đồ thị hàm số bậc ba.
Cách giải:
Quan sát đồ thị hàm số ta thấy: khi \(x \to + \infty \) thì \(y \to + \infty \Rightarrow \) Hệ số \(a > 0 \Rightarrow \) Loại bỏ phương án B và C
Mặt khác, đồ thị hàm số đạt cực trị tại 2 điểm \(x = - 2,\,\,x = {x_0}\left( { - 1 < {x_0} < 0} \right)\)
Xét \(y = {x^3} - 3{x^2} \Rightarrow y' = 3{x^2} - 6x,\,\,y' = 0 \Leftrightarrow \left[ \begin{array}{l}x = 0\\x = 2\end{array} \right. \Rightarrow \) Loại phương án D
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho hàm số \(y = \frac{{\ln \,x}}{x}\), kết luận nào sau đây đúng?
Câu 2:
Cho hàm số \(y = f\left( x \right)\) có bảng biến thiên như sau
Mệnh đề nào sau đây sai?
Câu 3:
Nghiệm của phương trình \({\log _3}\left( {x - 2} \right) = 2\) là
Câu 4:
Tập xác định của hàm số \(y = {\log _2}\left( {3 - x} \right)\) là
về câu hỏi!