Câu hỏi:

23/02/2023 294

Giá trị nhỏ nhất m của hàm số \(y = \sqrt {5 - 4x} \) trên đoạn \(\left[ { - 1;1} \right]\) là:

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án C

Phương pháp:

Chứng minh hàm số đã cho nghịch biến trên \(\left[ { - 1;1} \right] \Rightarrow \mathop {\min }\limits_{\left[ { - 1;1} \right]} y = y\left( 1 \right)\)

Cách giải:

\(y = \sqrt {5 - 4x} \Rightarrow y' = \frac{{ - 2}}{{\sqrt {5 - 4x} }} < 0,\,\,\forall x \in \left[ { - 1;1} \right]\)

\( \Rightarrow \mathop {\min }\limits_{\left[ { - 1;1} \right]} y = y\left( 1 \right) = \sqrt {5 - 4.1} = 1 \Rightarrow m = 1\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Lời giải

Đáp án B

Phương pháp:

Giải phương trình \(y' = 0\), lập bảng xét dấu, điểm \(x = {x_0}\) là điểm cực trị của hàm số khi và chỉ khi qua điểm đó y’ đổi dấu.

Cách giải:

TXĐ: \(D = \left( {0; + \infty } \right)\)

\(y = \frac{{\ln x}}{x} \Rightarrow y' = \frac{{\frac{1}{x}.x - \ln x.1}}{{{x^2}}} = \frac{{1 - \ln x}}{{{x^2}}} = 0 \Leftrightarrow \ln x = 1 \Leftrightarrow x = e\)

Bảng xét dấu y’:

x

0

e

\( + \infty \)

y’

        +

0          -

 

Hàm số đạt cực đại tại \(x = e\) hay

Câu 2

Lời giải

Đáp án D

Phương pháp:

Hàm số \(y = {\log _a}f\left( x \right)\) xác định \( \Leftrightarrow f\left( x \right) > 0\)

Cách giải:

ĐKXĐ: \(3 - x > 0 \Leftrightarrow x < 3\). Vậy TXĐ của hàm số là \(D = \left( { - \infty ;3} \right)\)

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP