Tìm giá trị thực của tham số m để hàm số \(y = \frac{1}{3}{x^3} - m{x^2} + \left( {{m^2} - 4} \right)x + 3\) đạt cực tiểu tại \(x = 3\) 
                                    
                                                                                                                        Tìm giá trị thực của tham số m để hàm số \(y = \frac{1}{3}{x^3} - m{x^2} + \left( {{m^2} - 4} \right)x + 3\) đạt cực tiểu tại \(x = 3\)
D. \(m = - 7\)
Quảng cáo
Trả lời:
 Giải bởi Vietjack
                                        Giải bởi Vietjack
                                    Đáp án A
Phương pháp:
Hàm số bậc ba đạt cực tiểu tại \(x = {x_0} \Leftrightarrow \left\{ \begin{array}{l}y'\left( {{x_0}} \right) = 0\\y''\left( {{x_0}} \right) > 0\end{array} \right.\)
Cách giải:
\(y = \frac{1}{3}{x^3} - m{x^2} + \left( {{m^2} - 4} \right)x + 3 \Rightarrow y' = {x^2} - 2mx + {m^2} - 4,\,\,\,y'' = 2x - 2m\)
Hàm số đạt cực tiểu tại \(x = 3 \Leftrightarrow \left\{ \begin{array}{l}y'\left( 3 \right) = 0\\y''\left( 3 \right) > 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}9 - 6m + {m^2} - 4 = 0\\6 - 2m > 0\end{array} \right.\)
\( \Leftrightarrow \left\{ \begin{array}{l}{m^2} - 6m + 5 = 0\\m < 3\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}\left[ \begin{array}{l}m = 1\\m = 5\end{array} \right.\\m < 3\end{array} \right. \Leftrightarrow m = 1\)
Hot: 1000+ Đề thi giữa kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tổng ôn lớp 12 môn Toán, Lí, Hóa, Văn, Anh, Sinh Sử, Địa, KTPL (Form 2025) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
A.
B.
D. \({x_{CT}} = 1\)
Lời giải
Đáp án B
Phương pháp:
Giải phương trình \(y' = 0\), lập bảng xét dấu, điểm \(x = {x_0}\) là điểm cực trị của hàm số khi và chỉ khi qua điểm đó y’ đổi dấu.
Cách giải:
TXĐ: \(D = \left( {0; + \infty } \right)\)
\(y = \frac{{\ln x}}{x} \Rightarrow y' = \frac{{\frac{1}{x}.x - \ln x.1}}{{{x^2}}} = \frac{{1 - \ln x}}{{{x^2}}} = 0 \Leftrightarrow \ln x = 1 \Leftrightarrow x = e\)
Bảng xét dấu y’:
| x | 0 | e | \( + \infty \) | 
| y’ | + | 0 - | 
 | 
Hàm số đạt cực đại tại \(x = e\) hay
Câu 2
D. \(D = \left( { - \infty ;3} \right)\)
Lời giải
Đáp án D
Phương pháp:
Hàm số \(y = {\log _a}f\left( x \right)\) xác định \( \Leftrightarrow f\left( x \right) > 0\)
Cách giải:
ĐKXĐ: \(3 - x > 0 \Leftrightarrow x < 3\). Vậy TXĐ của hàm số là \(D = \left( { - \infty ;3} \right)\)
Câu 3
D. \(x = \frac{3}{2}\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
D. Hàm số có hai điểm cực tiểu.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
D. \(y = \frac{{x + 2}}{{x + 1}}\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
D. \(y' = {e^{ - x}} - \frac{1}{x}\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
 
 Nhắn tin Zalo
 Nhắn tin Zalo