Câu hỏi:
23/02/2023 1,064Tìm m để đồ thị hàm số \(y = {x^4} - \left( {m - 1} \right){x^2} + m\) có ba điểm cực trị là ba đỉnh của một tam giác có diện tích bằng 1.
Quảng cáo
Trả lời:
Đáp án D
Phương pháp:
+) Tìm điều kiện để hàm số có 3 điểm cực trị.
+) Nhận xét tam giác tạo thành bởi 3 điểm cực trị là tam giác cân, tính diện tích tam giác cân đó.
Cách giải:
\(y = {x^4} - \left( {m - 1} \right){x^2} + m \Rightarrow y' = 4{x^3} - 2\left( {m - 1} \right)x = 0 \Leftrightarrow \left[ \begin{array}{l}x = 0\\{x^2} = \frac{{m - 1}}{2}\end{array} \right.\)
Để đồ thị hàm số có 3 điểm cực trị thì \(\frac{{m - 1}}{2} > 0 \Leftrightarrow m > 1\). Khi đó, giả sử tọa độ ba điểm cực trị là \(A\left( {0;m} \right),\,\,\,B\left( { - \sqrt {\frac{{m - 1}}{2}} ; - \frac{{{m^2} - 6m + 1}}{4}} \right),\,\,\,C\left( {\sqrt {\frac{{m - 1}}{2}} ; - \frac{{{m^2} - 6m + 1}}{4}} \right)\)
Dễ dàng chứng minh tam giác ABC cân tại A, gọi \(H\left( {0; - \frac{{{m^2} - 6m + 1}}{4}} \right)\) là trung điểm của BC, khi đó:
\({S_{ABC}} = \frac{1}{2}AH.BC = \frac{1}{2}.\left| { - \frac{{{m^2} - 6m + 1}}{4} - m} \right|.2\sqrt {\frac{{m - 1}}{2}} = 1\)
\( \Leftrightarrow \left| {\frac{{{m^2} - 2m + 1}}{4}} \right|\sqrt {\frac{{m - 1}}{2}} = 1\)
\( \Rightarrow {\left( {m - 1} \right)^2}.\sqrt {m - 1} = 4\sqrt 2 \Leftrightarrow {\left( {\sqrt {m - 1} } \right)^5} = {\left( {\sqrt 2 } \right)^5}\)
\( \Leftrightarrow \sqrt {m - 1} = \sqrt 2 \Leftrightarrow m - 1 = 2 \Leftrightarrow m = 3\)
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp án B
Phương pháp:
Giải phương trình \(y' = 0\), lập bảng xét dấu, điểm \(x = {x_0}\) là điểm cực trị của hàm số khi và chỉ khi qua điểm đó y’ đổi dấu.
Cách giải:
TXĐ: \(D = \left( {0; + \infty } \right)\)
\(y = \frac{{\ln x}}{x} \Rightarrow y' = \frac{{\frac{1}{x}.x - \ln x.1}}{{{x^2}}} = \frac{{1 - \ln x}}{{{x^2}}} = 0 \Leftrightarrow \ln x = 1 \Leftrightarrow x = e\)
Bảng xét dấu y’:
x |
0 |
e |
\( + \infty \) |
y’ |
+ |
0 - |
|
Hàm số đạt cực đại tại \(x = e\) hay
Lời giải
Đáp án D
Phương pháp:
Hàm số \(y = {\log _a}f\left( x \right)\) xác định \( \Leftrightarrow f\left( x \right) > 0\)
Cách giải:
ĐKXĐ: \(3 - x > 0 \Leftrightarrow x < 3\). Vậy TXĐ của hàm số là \(D = \left( { - \infty ;3} \right)\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
5920 câu Trắc nghiệm tổng hợp môn Toán 2023 có đáp án (Phần 1)
135 câu Bài tập Hình học mặt nón, mặt trụ, mặt cầu cực hay có lời giải (P1)
79 câu Chuyên đề Toán 12 Bài 2 Dạng 1: Xác định vectơ pháp tuyến và viết phương trình mặt phẳng có đáp án
80 câu Trắc nghiệm Tích phân có đáp án (Phần 1)
56 câu Chuyên đề Toán 12 Bài 2: Lôgarit có đáp án
87 câu Chuyên đề Toán 12 Bài 3 Dạng 1: Xác định vectơ pháp tuyến và viết phương trình mặt phẳng có đáp án
15 câu Trắc nghiệm Số phức có đáp án (Vận dụng)
140 câu Bài tập Hàm số mũ và Logarit cơ bản, nâng cao cực hay có lời giải chi tiết (P1)
Hãy Đăng nhập hoặc Tạo tài khoản để gửi bình luận