Câu hỏi:
23/02/2023 1,158
Tìm m để đồ thị hàm số \(y = {x^4} - \left( {m - 1} \right){x^2} + m\) có ba điểm cực trị là ba đỉnh của một tam giác có diện tích bằng 1.
Tìm m để đồ thị hàm số \(y = {x^4} - \left( {m - 1} \right){x^2} + m\) có ba điểm cực trị là ba đỉnh của một tam giác có diện tích bằng 1.
Quảng cáo
Trả lời:
Đáp án D
Phương pháp:
+) Tìm điều kiện để hàm số có 3 điểm cực trị.
+) Nhận xét tam giác tạo thành bởi 3 điểm cực trị là tam giác cân, tính diện tích tam giác cân đó.
Cách giải:
\(y = {x^4} - \left( {m - 1} \right){x^2} + m \Rightarrow y' = 4{x^3} - 2\left( {m - 1} \right)x = 0 \Leftrightarrow \left[ \begin{array}{l}x = 0\\{x^2} = \frac{{m - 1}}{2}\end{array} \right.\)
Để đồ thị hàm số có 3 điểm cực trị thì \(\frac{{m - 1}}{2} > 0 \Leftrightarrow m > 1\). Khi đó, giả sử tọa độ ba điểm cực trị là \(A\left( {0;m} \right),\,\,\,B\left( { - \sqrt {\frac{{m - 1}}{2}} ; - \frac{{{m^2} - 6m + 1}}{4}} \right),\,\,\,C\left( {\sqrt {\frac{{m - 1}}{2}} ; - \frac{{{m^2} - 6m + 1}}{4}} \right)\)
Dễ dàng chứng minh tam giác ABC cân tại A, gọi \(H\left( {0; - \frac{{{m^2} - 6m + 1}}{4}} \right)\) là trung điểm của BC, khi đó:
\({S_{ABC}} = \frac{1}{2}AH.BC = \frac{1}{2}.\left| { - \frac{{{m^2} - 6m + 1}}{4} - m} \right|.2\sqrt {\frac{{m - 1}}{2}} = 1\)
\( \Leftrightarrow \left| {\frac{{{m^2} - 2m + 1}}{4}} \right|\sqrt {\frac{{m - 1}}{2}} = 1\)
\( \Rightarrow {\left( {m - 1} \right)^2}.\sqrt {m - 1} = 4\sqrt 2 \Leftrightarrow {\left( {\sqrt {m - 1} } \right)^5} = {\left( {\sqrt 2 } \right)^5}\)
\( \Leftrightarrow \sqrt {m - 1} = \sqrt 2 \Leftrightarrow m - 1 = 2 \Leftrightarrow m = 3\)
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp án B
Phương pháp:
Giải phương trình \(y' = 0\), lập bảng xét dấu, điểm \(x = {x_0}\) là điểm cực trị của hàm số khi và chỉ khi qua điểm đó y’ đổi dấu.
Cách giải:
TXĐ: \(D = \left( {0; + \infty } \right)\)
\(y = \frac{{\ln x}}{x} \Rightarrow y' = \frac{{\frac{1}{x}.x - \ln x.1}}{{{x^2}}} = \frac{{1 - \ln x}}{{{x^2}}} = 0 \Leftrightarrow \ln x = 1 \Leftrightarrow x = e\)
Bảng xét dấu y’:
x |
0 |
e |
\( + \infty \) |
y’ |
+ |
0 - |
|
Hàm số đạt cực đại tại \(x = e\) hay
Lời giải
Đáp án D
Phương pháp:
Hàm số \(y = {\log _a}f\left( x \right)\) xác định \( \Leftrightarrow f\left( x \right) > 0\)
Cách giải:
ĐKXĐ: \(3 - x > 0 \Leftrightarrow x < 3\). Vậy TXĐ của hàm số là \(D = \left( { - \infty ;3} \right)\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.