Câu hỏi:
23/02/2023 198Tìm m để giá trị nhỏ nhất của hàm số \(y = {x^3} - 3{x^2} + m - 1\) trên đoạn \(\left[ {0;3} \right]\) bằng 2
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Đáp án B
Phương pháp:
Phương pháp tìm GTLN, GTNN của hàm số \(y = f\left( x \right)\) trên \(\left[ {a;b} \right]\)
+) Bước 1: Tính y’, giải phương trình \(y' = 0 \Rightarrow {x_i} \in \left[ {a;b} \right]\)
+) Bước 2: Tính các giá trị \(f\left( a \right);\,\,f\left( b \right);\,\,f\left( {{x_i}} \right)\)
+) Bước 3: So sánh các giá trị tính được ở trên và kết luận.
Cách giải:
\(y = {x^3} - 3{x^2} + m - 1 \Rightarrow y' = 3{x^2} - 6x = 0 \Leftrightarrow \left[ \begin{array}{l}x = 0\\x = 2\end{array} \right.\)
Bảng biến thiên của hàm số trên đoạn \(\left[ {0;3} \right]\)
Để giá trị nhỏ nhất của hàm số \(y = {x^3} - 3{x^2} + m - 1\) trên đoạn \(\left[ {0;3} \right]\) bằng 2 thì \(m - 5 = 2 \Leftrightarrow m = 7\)
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho hàm số \(y = \frac{{\ln \,x}}{x}\), kết luận nào sau đây đúng?
Câu 2:
Cho hàm số \(y = f\left( x \right)\) có bảng biến thiên như sau
Mệnh đề nào sau đây sai?
Câu 3:
Nghiệm của phương trình \({\log _3}\left( {x - 2} \right) = 2\) là
Câu 4:
Tập xác định của hàm số \(y = {\log _2}\left( {3 - x} \right)\) là
về câu hỏi!