Tìm m để giá trị nhỏ nhất của hàm số \(y = {x^3} - 3{x^2} + m - 1\) trên đoạn \(\left[ {0;3} \right]\) bằng 2
                                    
                                                                                                                        Tìm m để giá trị nhỏ nhất của hàm số \(y = {x^3} - 3{x^2} + m - 1\) trên đoạn \(\left[ {0;3} \right]\) bằng 2
D. \(m = 4\)
Quảng cáo
Trả lời:
 Giải bởi Vietjack
                                        Giải bởi Vietjack
                                    Đáp án B
Phương pháp:
Phương pháp tìm GTLN, GTNN của hàm số \(y = f\left( x \right)\) trên \(\left[ {a;b} \right]\)
+) Bước 1: Tính y’, giải phương trình \(y' = 0 \Rightarrow {x_i} \in \left[ {a;b} \right]\)
+) Bước 2: Tính các giá trị \(f\left( a \right);\,\,f\left( b \right);\,\,f\left( {{x_i}} \right)\)
+) Bước 3: So sánh các giá trị tính được ở trên và kết luận.
Cách giải:
\(y = {x^3} - 3{x^2} + m - 1 \Rightarrow y' = 3{x^2} - 6x = 0 \Leftrightarrow \left[ \begin{array}{l}x = 0\\x = 2\end{array} \right.\)
Bảng biến thiên của hàm số trên đoạn \(\left[ {0;3} \right]\)
![Tìm m để giá trị nhỏ nhất của hàm số y = x^3 - 3x^2 + m - 1 trên đoạn [0; 3] bằng 2 A. m = 3 (ảnh 1)](https://video.vietjack.com/upload2/quiz_source1/2023/02/blobid3-1677162204.png) 
Để giá trị nhỏ nhất của hàm số \(y = {x^3} - 3{x^2} + m - 1\) trên đoạn \(\left[ {0;3} \right]\) bằng 2 thì \(m - 5 = 2 \Leftrightarrow m = 7\)
Hot: 1000+ Đề thi giữa kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
A.
B.
D. \({x_{CT}} = 1\)
Lời giải
Đáp án B
Phương pháp:
Giải phương trình \(y' = 0\), lập bảng xét dấu, điểm \(x = {x_0}\) là điểm cực trị của hàm số khi và chỉ khi qua điểm đó y’ đổi dấu.
Cách giải:
TXĐ: \(D = \left( {0; + \infty } \right)\)
\(y = \frac{{\ln x}}{x} \Rightarrow y' = \frac{{\frac{1}{x}.x - \ln x.1}}{{{x^2}}} = \frac{{1 - \ln x}}{{{x^2}}} = 0 \Leftrightarrow \ln x = 1 \Leftrightarrow x = e\)
Bảng xét dấu y’:
| x | 0 | e | \( + \infty \) | 
| y’ | + | 0 - | 
 | 
Hàm số đạt cực đại tại \(x = e\) hay
Câu 2
D. \(D = \left( { - \infty ;3} \right)\)
Lời giải
Đáp án D
Phương pháp:
Hàm số \(y = {\log _a}f\left( x \right)\) xác định \( \Leftrightarrow f\left( x \right) > 0\)
Cách giải:
ĐKXĐ: \(3 - x > 0 \Leftrightarrow x < 3\). Vậy TXĐ của hàm số là \(D = \left( { - \infty ;3} \right)\)
Câu 3
D. \(x = \frac{3}{2}\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
D. Hàm số có hai điểm cực tiểu.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
D. \(y = \frac{{x + 2}}{{x + 1}}\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
D. \(y' = {e^{ - x}} - \frac{1}{x}\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
 
 Nhắn tin Zalo
 Nhắn tin Zalo