Câu hỏi:

23/02/2023 709

Viết biểu thức sau dưới dạng lũy thừa \(P = \sqrt x \sqrt[3]{{{x^2}}}\)

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án A

Phương pháp:

Sử dụng các công thức \(\sqrt[n]{{{a^m}}} = {a^{\frac{m}{n}}};\,\,\,{a^m}.{a^n} = {a^{m + n}}\)

Cách giải: \(P = \sqrt x \sqrt[3]{{{x^2}}} = {x^{\frac{1}{2}}}.{x^{\frac{2}{3}}} = {x^{\frac{7}{6}}}\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Lời giải

Đáp án B

Phương pháp:

Giải phương trình \(y' = 0\), lập bảng xét dấu, điểm \(x = {x_0}\) là điểm cực trị của hàm số khi và chỉ khi qua điểm đó y’ đổi dấu.

Cách giải:

TXĐ: \(D = \left( {0; + \infty } \right)\)

\(y = \frac{{\ln x}}{x} \Rightarrow y' = \frac{{\frac{1}{x}.x - \ln x.1}}{{{x^2}}} = \frac{{1 - \ln x}}{{{x^2}}} = 0 \Leftrightarrow \ln x = 1 \Leftrightarrow x = e\)

Bảng xét dấu y’:

x

0

e

\( + \infty \)

y’

        +

0          -

 

Hàm số đạt cực đại tại \(x = e\) hay

Câu 2

Lời giải

Đáp án D

Phương pháp:

Hàm số \(y = {\log _a}f\left( x \right)\) xác định \( \Leftrightarrow f\left( x \right) > 0\)

Cách giải:

ĐKXĐ: \(3 - x > 0 \Leftrightarrow x < 3\). Vậy TXĐ của hàm số là \(D = \left( { - \infty ;3} \right)\)

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP