Câu hỏi:

23/02/2023 179

Thể tích của khối lăng trụ đều ABC.A’B’C’ biết cạnh đáy \[AB = a\], góc giữa A’B và mặt bên (ACC’A’) bằng \({45^0}\)

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án A

Phương pháp:

Thể tích của khối lăng trụ đều ABC.A’B’C’ biết cạnh đáy AB = a, góc giữa A’B và mặt bên (ACC'A') (ảnh 1)

Gọi a’ là hình chiếu vuông góc của a trên mặt phẳng (P).

Góc giữa đường thẳng a và mặt phẳng (P) là góc giữa đường thẳng a và a’.

Cách giải:

Thể tích của khối lăng trụ đều ABC.A’B’C’ biết cạnh đáy AB = a, góc giữa A’B và mặt bên (ACC'A') (ảnh 1)

Gọi I là trung điểm của AC. \(\Delta ABC\) đều, \(AB = a \Rightarrow B = \frac{{a\sqrt 3 }}{2},\,\,\,{S_{ABC}} = \frac{{{a^2}\sqrt 3 }}{4}\)\(BI \bot AC\)

\(BI \bot AA'\left( {do\,AA' \bot \left( {ABC} \right)} \right)\)

\( \Rightarrow BI \bot \left( {ACC'A'} \right) \Rightarrow \left( {A'B;\left( {ACC'A'} \right)} \right) = \left( {A'B;A'I} \right) = IA'B = {45^0}\)

\(\Delta IA'B\) vuông tại I, \(IA'B = {45^0} \Rightarrow \Delta IA'B\) vuông cân tại I

\( \Rightarrow A'B = \sqrt 2 .IB = \sqrt 2 .\frac{{a\sqrt 3 }}{2} = \frac{{a\sqrt 6 }}{2}\)

\(\Delta ABA'\) vuông tại A \( \Rightarrow AA' = \sqrt {A'{B^2} - A{B^2}} = \sqrt {\left( {\frac{{a\sqrt 6 }}{2}} \right) - {a^2}} = \frac{{a\sqrt 2 }}{2}\)

Thể tích khối lăng trụ đều ABC.A’B’C’ là: \(V = {S_{ABC}}.AA' = \frac{{{a^2}\sqrt 3 }}{4}.\frac{{a\sqrt 2 }}{2} = \frac{{{a^3}\sqrt 6 }}{8}\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Lời giải

Đáp án B

Phương pháp:

Giải phương trình \(y' = 0\), lập bảng xét dấu, điểm \(x = {x_0}\) là điểm cực trị của hàm số khi và chỉ khi qua điểm đó y’ đổi dấu.

Cách giải:

TXĐ: \(D = \left( {0; + \infty } \right)\)

\(y = \frac{{\ln x}}{x} \Rightarrow y' = \frac{{\frac{1}{x}.x - \ln x.1}}{{{x^2}}} = \frac{{1 - \ln x}}{{{x^2}}} = 0 \Leftrightarrow \ln x = 1 \Leftrightarrow x = e\)

Bảng xét dấu y’:

x

0

e

\( + \infty \)

y’

        +

0          -

 

Hàm số đạt cực đại tại \(x = e\) hay

Câu 2

Lời giải

Đáp án D

Phương pháp:

Hàm số \(y = {\log _a}f\left( x \right)\) xác định \( \Leftrightarrow f\left( x \right) > 0\)

Cách giải:

ĐKXĐ: \(3 - x > 0 \Leftrightarrow x < 3\). Vậy TXĐ của hàm số là \(D = \left( { - \infty ;3} \right)\)

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP