Câu hỏi:

23/02/2023 826

Cho hình chóp S.ABC có đáy ABC là tam giác vuông cân tại A, \(BC = a\sqrt 2 \), SC là đường cao, \(SC = a\). Mặt phẳng qua C, vuông góc với SB cắt SA, SB lần lượt tại E, F. Tính thể tích khối chóp S.CEF.

Đáp án chính xác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án B

Phương pháp:

\(\frac{{{V_{S.CEF}}}}{{{V_{S.CAB}}}} = \frac{{SE}}{{SA}}.\frac{{SF}}{{SB}}\)

Cách giải:

Cho hình chóp S.ABC có đáy ABC là tam giác vuông cân tại A, BC = a căn bậc hai 2, SC là đường (ảnh 1)

+) Tính thể tích khối chóp S.ABC:

Tam giác ABC vuông cân tại A, \(BC = a\sqrt 2 \Rightarrow AB = AC = a\)

\( \Rightarrow {S_{ABC}} = \frac{1}{2}{a^2} \Rightarrow {V_{S.ABC}} = \frac{1}{3}.{S_{ABC}}.SC = \frac{1}{3}.\frac{1}{2}{a^2}.a = \frac{1}{6}{a^3}\)

+) Chứng minh \(CF \bot SB,\,\,CE \bot SA\):

Ta có: \(\left( {CEF} \right) \bot SB \Rightarrow \left\{ \begin{array}{l}CF \bot SB\\CE \bot SB\end{array} \right.\)

\(\left\{ \begin{array}{l}AB \bot AC\\AB \bot SC\end{array} \right. \Rightarrow AB \bot \left( {SAC} \right) \Rightarrow AB \bot CE\), mà \(SB \bot CE \Rightarrow CE \bot \left( {SAB} \right) \Rightarrow CE \bot SA\)

+) Lập tỉ số thể tích của khối chóp S.CEF và S.ABC:

Tam giác SBC vuông tại C, CF là đường cao \[ \Rightarrow S{C^2} = SF.SB \Rightarrow \frac{{S{C^2}}}{{S{B^2}}} = \frac{{SF}}{{SB}} \Rightarrow \frac{{SF}}{{SB}} = \frac{{{a^2}}}{{{a^2} + 2{a^2}}} = \frac{1}{3}\]

Tam giác SAC vuông tại C, CE là đường cao\[ \Rightarrow S{C^2} = SE.SA \Rightarrow \frac{{S{C^2}}}{{S{A^2}}} = \frac{{SE}}{{SA}} \Rightarrow \frac{{SE}}{{SA}} = \frac{{{a^2}}}{{{a^2} + {a^2}}} = \frac{1}{2}\]

Ta có: \(\frac{{{V_{S.CEF}}}}{{{V_{S.ABC}}}} = \frac{{SF}}{{SB}}.\frac{{SE}}{{SA}} = \frac{1}{3}.\frac{1}{2} = \frac{1}{6} \Rightarrow {V_{S.CEF}} = \frac{1}{6}{V_{S.ABC}} = \frac{1}{6}.\frac{1}{6}{a^3} = \frac{{{a^3}}}{{36}}\)

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho hàm số \(y = \frac{{\ln \,x}}{x}\), kết luận nào sau đây đúng?

Xem đáp án » 23/02/2023 11,192

Câu 2:

Tập xác định của hàm số \(y = {\log _2}\left( {3 - x} \right)\)

Xem đáp án » 23/02/2023 9,014

Câu 3:

Nghiệm của phương trình \({\log _3}\left( {x - 2} \right) = 2\)

Xem đáp án » 23/02/2023 7,106

Câu 4:

Cho hàm số \(y = f\left( x \right)\) có bảng biến thiên như sau

Cho hàm số y = f(x) có bảng biến thiên như sau Mệnh đề nào sau đây sai A. Hàm số có ba điểm cực trị. (ảnh 1)

Mệnh đề nào sau đây sai?

Xem đáp án » 23/02/2023 6,152

Câu 5:

Nghiệm của phương trình \({2^x} = 3\) là:

Xem đáp án » 23/02/2023 5,890

Câu 6:

Hàm số nào sau đây nghịch biến trên tập xác định của nó?

Xem đáp án » 23/02/2023 3,028

Câu 7:

Đạo hàm của hàm số \(y = {e^{ - x}} + \ln x\) là:

Xem đáp án » 23/02/2023 2,010
Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua