Câu hỏi:

23/02/2023 252 Lưu

Hình chóp tứ giác đều nội tiếp mặt cầu bán kính\(R = 9\), có chiều cao \(h = \frac{{4R}}{3}\), thể tích của khối chóp đó là V.

A. \(V = 486\)
B. \(V = 486\sqrt 2 \)
C. \(V = 576\sqrt 2 \)

D. \(V = 576\)

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án D

Phương pháp:

Hình chóp tứ giác đều nội tiếp mặt cầu bán kínhR = 9, có chiều cao h = 4R/3, thể tích của khối  (ảnh 1)

Thể tích khối chóp \(V = \frac{1}{3}Sh\)

Cách giải:

Gọi O là tâm của hình vuông ABCD; M là trung điểm của SB; I là giao điểm của SO với mặt phẳng trung trực của đoạn SB. Khi đó, I là tâm mặt cầu ngoại tiếp hình chóp S.ABCD.

Theo đề bài, ta có: \(\left\{ \begin{array}{l}IS = IA = IB = IC = ID = R = 9\\SO = h = \frac{{4R}}{3} = \frac{{4.9}}{3} = 12\end{array} \right.\)

\(\Delta SIM\) đồng dạng

\( \Leftrightarrow S{O^2} + O{B^2} = 2SI.SO \Leftrightarrow {12^2} + O{B^2} = 2.9.12 \Leftrightarrow O{B^2} = 72 \Rightarrow OB = 6\sqrt 2 \)

\( \Rightarrow AB = \sqrt 2 .OB = \sqrt 2 .6 = 12 \Rightarrow {S_{ABCD}} = {12^2} = 144\)

Thể tích khối chóp \({V_{S.ABCD}} = \frac{1}{3}{S_{ABCD}}.SO = \frac{1}{3}.144.12 = 576\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A. xCĐ=1

B. xCĐ=e

C. \({x_{CT}} = 1\)

D. \({x_{CT}} = 1\)

Lời giải

Đáp án B

Phương pháp:

Giải phương trình \(y' = 0\), lập bảng xét dấu, điểm \(x = {x_0}\) là điểm cực trị của hàm số khi và chỉ khi qua điểm đó y’ đổi dấu.

Cách giải:

TXĐ: \(D = \left( {0; + \infty } \right)\)

\(y = \frac{{\ln x}}{x} \Rightarrow y' = \frac{{\frac{1}{x}.x - \ln x.1}}{{{x^2}}} = \frac{{1 - \ln x}}{{{x^2}}} = 0 \Leftrightarrow \ln x = 1 \Leftrightarrow x = e\)

Bảng xét dấu y’:

x

0

e

\( + \infty \)

y’

        +

0          -

 

Hàm số đạt cực đại tại \(x = e\) hay

Câu 2

A. \(D = \left( {3; + \infty } \right)\)
B. \(D = \left[ {3; + \infty } \right)\)
C. \(D = \left( { - \infty ;2} \right)\)

D. \(D = \left( { - \infty ;3} \right)\)

Lời giải

Đáp án D

Phương pháp:

Hàm số \(y = {\log _a}f\left( x \right)\) xác định \( \Leftrightarrow f\left( x \right) > 0\)

Cách giải:

ĐKXĐ: \(3 - x > 0 \Leftrightarrow x < 3\). Vậy TXĐ của hàm số là \(D = \left( { - \infty ;3} \right)\)

Câu 3

A. \(x = \log {2^3}\)
B. \(x = {\log _3}2\)
C. \(x = {\log _2}3\)

D. \(x = \frac{3}{2}\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

A. \(x = 4\)
B. \(x = 10\)
C. \(x = 8\)
D. \(x = 11\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. Hàm số có ba điểm cực trị.
B. Hàm số có giá trị cực đại bằng 3
C. Hàm số có hai điểm cực tiểu bằng 0.

D. Hàm số có hai điểm cực tiểu.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \(y = \frac{{x - 2}}{{x - 1}}\)
B. \(y = - {x^3} + 1\)
C. \(y = - {x^4} + {x^2}\)

D. \(y = \frac{{x + 2}}{{x + 1}}\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. \(y' = {e^{ - x}} + \frac{1}{x}\)
B. \(y' = - {e^{ - x}} - \frac{1}{x}\)
C. \(y' = - {e^{ - x}} + \frac{1}{x}\)

D. \(y' = {e^{ - x}} - \frac{1}{x}\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP