Câu hỏi:

23/02/2023 103

Cho mặt cầu (S) có bán kính R, hình trụ (H) có đường tròn hai đáy thuộc (S) và có chiều cao \(h = \frac{{2R}}{{\sqrt 3 }}\). Tính tỉ số thể tích \({V_1}\) của (H) và \({V_2}\) của (S).

Đáp án chính xác

Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa... kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 70k).

Tổng ôn Toán-lý hóa Văn-sử-đia Tiếng anh & các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án C

Phương pháp:

Thể tích khối trụ: \(V = \pi {r^2}h\)

Thể tích khối cầu: \(V = \frac{4}{3}\pi {R^3}\)

Cách giải:

Cho mặt cầu (S) có bán kính R, hình trụ (H) có đường tròn hai đáy thuộc (S) và có chiều cao (ảnh 1)

Thể tích khối cầu: \({V_2} = \frac{4}{3}\pi {R^3}\)

Tam giác OIA vuông tại O \( \Rightarrow OA = \sqrt {I{A^2} - O{I^2}} = \sqrt {{R^2} - {{\left( {\frac{R}{{\sqrt 3 }}} \right)}^2}} = \frac{{R\sqrt 6 }}{3}\)

Thể tích khối trụ: \({V_1} = \pi {r^2}h = \pi .\left( {\frac{{R\sqrt 6 }}{3}} \right).\frac{{2R}}{{\sqrt 3 }} = \frac{{4\sqrt 3 \pi {R^3}}}{9}\)

\( \Rightarrow \frac{{{V_1}}}{{{V_2}}} = \frac{{\frac{{4\sqrt 3 \pi {R^3}}}{9}}}{{\frac{4}{3}\pi {R^3}}} = \frac{{\sqrt 3 }}{3}\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho hàm số \(y = \frac{{\ln \,x}}{x}\), kết luận nào sau đây đúng?

Xem đáp án » 23/02/2023 10,695

Câu 2:

Cho hàm số \(y = f\left( x \right)\) có bảng biến thiên như sau

Cho hàm số y = f(x) có bảng biến thiên như sau Mệnh đề nào sau đây sai A. Hàm số có ba điểm cực trị. (ảnh 1)

Mệnh đề nào sau đây sai?

Xem đáp án » 23/02/2023 6,009

Câu 3:

Tập xác định của hàm số \(y = {\log _2}\left( {3 - x} \right)\)

Xem đáp án » 23/02/2023 5,614

Câu 4:

Nghiệm của phương trình \({\log _3}\left( {x - 2} \right) = 2\)

Xem đáp án » 23/02/2023 5,447

Câu 5:

Nghiệm của phương trình \({2^x} = 3\) là:

Xem đáp án » 23/02/2023 3,495

Câu 6:

Hàm số nào sau đây nghịch biến trên tập xác định của nó?

Xem đáp án » 23/02/2023 2,953

Câu 7:

Đạo hàm của hàm số \(y = {e^{ - x}} + \ln x\) là:

Xem đáp án » 23/02/2023 1,601

Bình luận


Bình luận