Câu hỏi:

23/02/2023 384

Bán kính mặt cầu ngoại tiếp tứ diện ABCD biết \(AB = CD = \sqrt 5 ,\,\,\,BC = AD = \sqrt {10} ,\,\,\,AC = BD = \sqrt {13} \)

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án A

Phương pháp:

Gọi I, J lần lượt là trung điểm của các cạnh AB, CD; O là trung điểm của IJ.

Ta chứng minh O là tâm mặt cầu ngoại tiếp tứ diện ABCD.

Cách giải:

Bán kính mặt cầu ngoại tiếp tứ diện ABCD biết AB = CA = căn bậc hai 5, BC= AD = căn bậc hai 10 (ảnh 1)

Gọi I, J lần lượt là trung điểm của các cạnh AB, CD; O là trung điểm của IJ.

Ta chứng minh O là tâm mặt cầu ngoại tiếp tứ diện ABCD:

Theo đề bài, ta có: \(AB = CD = \sqrt 5 ,\,\,BC = AD = \sqrt {10} ,\,\,AC = BD = \sqrt {13} \)

\( \Rightarrow \Delta BCD = \Delta ADC,\,\,\,\Delta ABD = \Delta BAC\)

\( \Rightarrow BJ = AJ,\,\,ID = IC\)

\( \Rightarrow \Delta JAB,\,\,\Delta ICD\) lần lượt là tam giác cân tại J, I

\( \Rightarrow \left\{ \begin{array}{l}IJ \bot AB\\IJ \bot CD\end{array} \right. \Rightarrow IJ\) là trung trực của các đoạn thẳng AB và CD

Mà O là trung điểm của IJ \( \Rightarrow OA = OB = OC = OD \Rightarrow \) O là tâm mặt cầu ngoại tiếp tứ diện ABCD.

Tính bán kính mặt cầu ngoại tiếp tứ diện ABCD:

Xét tam giác ACD: \(I{A^2} = \frac{{2\left( {A{C^2} + A{D^2}} \right) - C{D^2}}}{4} = \frac{{2\left( {13 + 10} \right) - 5}}{4} = \frac{{41}}{4} \Rightarrow JA = \frac{{\sqrt {41} }}{2}\)

Tam giác IJA vuông tại I \( \Rightarrow OA = \sqrt {I{A^2} + I{O^2}} = \sqrt {\frac{5}{4} + \frac{9}{4}} = \frac{{\sqrt {14} }}{2} \Rightarrow R = \frac{{\sqrt {14} }}{2}\)

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Cho hàm số \(y = \frac{{\ln \,x}}{x}\), kết luận nào sau đây đúng?

Lời giải

Đáp án B

Phương pháp:

Giải phương trình \(y' = 0\), lập bảng xét dấu, điểm \(x = {x_0}\) là điểm cực trị của hàm số khi và chỉ khi qua điểm đó y’ đổi dấu.

Cách giải:

TXĐ: \(D = \left( {0; + \infty } \right)\)

\(y = \frac{{\ln x}}{x} \Rightarrow y' = \frac{{\frac{1}{x}.x - \ln x.1}}{{{x^2}}} = \frac{{1 - \ln x}}{{{x^2}}} = 0 \Leftrightarrow \ln x = 1 \Leftrightarrow x = e\)

Bảng xét dấu y’:

x

0

e

\( + \infty \)

y’

        +

0          -

 

Hàm số đạt cực đại tại \(x = e\) hay

Câu 2

Tập xác định của hàm số \(y = {\log _2}\left( {3 - x} \right)\)

Lời giải

Đáp án D

Phương pháp:

Hàm số \(y = {\log _a}f\left( x \right)\) xác định \( \Leftrightarrow f\left( x \right) > 0\)

Cách giải:

ĐKXĐ: \(3 - x > 0 \Leftrightarrow x < 3\). Vậy TXĐ của hàm số là \(D = \left( { - \infty ;3} \right)\)

Câu 3

Nghiệm của phương trình \({\log _3}\left( {x - 2} \right) = 2\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Nghiệm của phương trình \({2^x} = 3\) là:

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Cho hàm số \(y = f\left( x \right)\) có bảng biến thiên như sau

Cho hàm số y = f(x) có bảng biến thiên như sau Mệnh đề nào sau đây sai A. Hàm số có ba điểm cực trị. (ảnh 1)

Mệnh đề nào sau đây sai?

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Hàm số nào sau đây nghịch biến trên tập xác định của nó?

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Đạo hàm của hàm số \(y = {e^{ - x}} + \ln x\) là:

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay