Câu hỏi:

24/02/2023 371

Gọi m0 là giá trị thực của tham số m  để đồ thị hàm số y=x4+2mx2+4 có ba điểm cực trị nằm trên các trục tọa độ. Mệnh đề nào sau đây đúng?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack
Chọn D
Ta có: y'=4x3+4mx. y'=04xx2+m=0x=0x2+m=0.
Để đồ thị hàm số có ba điểm cực trị thì: m<0. Khi đó tọa độ ba điểm cực trị lần lượt là: A0;4,Bm;m2+4,Cm;m2+4
. Để ba điểm cực trị đều nằm trên các trục tọa độ thì: m2+4=0m=±2. Vì điều kiện m<0 nên m=23;32. Suy ra đáp án D.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Chọn A
Media VietJack
Gọi H là trung điểm của AD. Theo giả thiết, suy ra SHABCD.
Đặt x=AD x>0. Suy ra SABCD=4x
HC2=16+x24
SH=3616x24=20x24 , 0<x<45
Suy ra VS.ABCD=13.4x.20x24=2x80x23=2x280x23803 (Bất đẳng thức Cauchy)

VS.ABCD=Vmax=803x2=80x2x=210.

Câu 2

Lời giải

Chọn D
Dựa vào bảng biến thiên ta thấy: limx1fx=+;limx1+fx=;limx+fx=2;limxfx=2.
Do đó đồ thị hàm số có tiệm cận đứng x=1 và tiệm cận ngang y=2.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP