Câu hỏi:

24/02/2023 66,045

Đường cong trong hình vẽ bên là đồ thị của hàm số nào trong các hàm số dưới đây?

Đường cong trong hình vẽ bên là đồ thị của hàm số nào trong các hàm số dưới đây (ảnh 1)

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án B

Đường cong trong hình vẽ bên là đồ thị của hàm số nào trong các hàm số dưới đây (ảnh 2)

Phương pháp:

Nhận dạng đồ thị hàm số bậc bốn trùng phương và bậc ba.

Cách giải:

Quan sát đồ thị hàm số, ta thấy: Đồ thị hàm số không phải đồ thị của hàm số bậc ba \( \Rightarrow \) Loại phương án A

\( \Rightarrow \) Hàm số có dạng bậc bốn trùng phương: \(y = a{x^4} + b{x^2} + c,\,\,\left( {a \ne 0} \right)\)

Khi \(x \to + \infty \) thì \(y \to + \infty \Rightarrow a > 0 \Rightarrow \) Loại phương án C

Đồ thị hàm số đi qua điểm \(\left( {1; - 3} \right) \Rightarrow \) Chọn phương án B.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án A

Phương pháp:

Để tam giác ABC vuông tại C thì \(\overrightarrow {AC} .\overrightarrow {BC} = 0\)

Cách giải:

Điểm C có hoành độ dương trên trục Ox, nên đặt \(C\left( {c;0;0} \right),\,\,c > 0\)

Ta có: \(\overrightarrow {CA} = \left( {1 - c;2;0} \right);\,\,\,\overrightarrow {CB} = \left( {2 - c; - 1;1} \right) \Rightarrow \overrightarrow {CA} .\overrightarrow {CB} = \left( {1 - c} \right).\left( {2 - c} \right) + 2\left( { - 1} \right) + 0.1 = {c^2} - 3c\)

Để tam giác ABC vuông tại C thì \(\overrightarrow {AC} .\overrightarrow {BC} = 0\)

\( \Leftrightarrow {c^2} - 3c = 0 \Leftrightarrow \left[ \begin{array}{l}c = 0\left( L \right)\\c = 3\left( {TM} \right)\end{array} \right. \Rightarrow C\left( {3;0;0} \right)\)

Câu 2

Lời giải

Đáp án D

Phương pháp:

\(y = {\log _a}f\left( x \right)\) xác định \( \Leftrightarrow f\left( x \right) > 0\)

Cách giải:

ĐKXĐ: \( - {x^2} + 3x > 0 \Leftrightarrow 0 < x < 3\)

TXĐ: \(D

Đáp án C

Phương pháp:

Hàm số bậc nhất trên bậc nhất không có cực trị.

Cách giải:

Chọn phương án C. Do:

\(y = \frac{{x - 1}}{{x + 3}},\,\left( {D = R\backslash \left\{ 3 \right\}} \right) \Rightarrow y' = \frac{4}{{{{\left( {x + 3} \right)}^2}}} > 0,\,\,\forall x \in D\)

\(y = {x^4},\,\,\left( {D = R} \right) \Rightarrow y' = 4{x^3}\), hàm số đạt cực tiểu tại \(x = 0\)

\(y = {x^2} + 2x + 2,\,\,\left( {D = R} \right) \Rightarrow y' = 2x + 2\), hàm số đạt cực tiểu tại \(x = - 1\)

\(y = - {x^3} + x,\,\,\left( {D = R} \right) \Rightarrow y' = - 3{x^2} + 1\), hàm số đạt cực tiểu tại \(x = - \frac{1}{{\sqrt 3 }}\), hàm số đạt cực đại tại \(x = \frac{1}{{\sqrt 3 }}\)

= \left( {0;3} \right)\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP