Đường cong trong hình vẽ bên là đồ thị của hàm số nào trong các hàm số dưới đây?
Đường cong trong hình vẽ bên là đồ thị của hàm số nào trong các hàm số dưới đây?

A. \(y = {x^3} - 3x - 2\)
B. \(y = {x^4} - 2{x^2} - 2\)
D. \(y = {x^4} + 2{x^2} - 2\)
Quảng cáo
Trả lời:

Đáp án B

Phương pháp:
Nhận dạng đồ thị hàm số bậc bốn trùng phương và bậc ba.
Cách giải:
Quan sát đồ thị hàm số, ta thấy: Đồ thị hàm số không phải đồ thị của hàm số bậc ba \( \Rightarrow \) Loại phương án A
\( \Rightarrow \) Hàm số có dạng bậc bốn trùng phương: \(y = a{x^4} + b{x^2} + c,\,\,\left( {a \ne 0} \right)\)
Khi \(x \to + \infty \) thì \(y \to + \infty \Rightarrow a > 0 \Rightarrow \) Loại phương án C
Đồ thị hàm số đi qua điểm \(\left( {1; - 3} \right) \Rightarrow \) Chọn phương án B.
Hot: Danh sách các trường đã công bố điểm chuẩn Đại học 2025 (mới nhất) (2025). Xem ngay
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
D. \(C\left( {5;0;0} \right)\)
Lời giải
Đáp án A
Phương pháp:
Để tam giác ABC vuông tại C thì \(\overrightarrow {AC} .\overrightarrow {BC} = 0\)
Cách giải:
Điểm C có hoành độ dương trên trục Ox, nên đặt \(C\left( {c;0;0} \right),\,\,c > 0\)
Ta có: \(\overrightarrow {CA} = \left( {1 - c;2;0} \right);\,\,\,\overrightarrow {CB} = \left( {2 - c; - 1;1} \right) \Rightarrow \overrightarrow {CA} .\overrightarrow {CB} = \left( {1 - c} \right).\left( {2 - c} \right) + 2\left( { - 1} \right) + 0.1 = {c^2} - 3c\)
Để tam giác ABC vuông tại C thì \(\overrightarrow {AC} .\overrightarrow {BC} = 0\)
\( \Leftrightarrow {c^2} - 3c = 0 \Leftrightarrow \left[ \begin{array}{l}c = 0\left( L \right)\\c = 3\left( {TM} \right)\end{array} \right. \Rightarrow C\left( {3;0;0} \right)\)
Câu 2
D. \(D = \left( {0;3} \right)\)
Lời giải
Đáp án D
Phương pháp:
\(y = {\log _a}f\left( x \right)\) xác định \( \Leftrightarrow f\left( x \right) > 0\)
Cách giải:
ĐKXĐ: \( - {x^2} + 3x > 0 \Leftrightarrow 0 < x < 3\)
TXĐ: \(D
Đáp án C
Phương pháp:
Hàm số bậc nhất trên bậc nhất không có cực trị.
Cách giải:
Chọn phương án C. Do:
\(y = \frac{{x - 1}}{{x + 3}},\,\left( {D = R\backslash \left\{ 3 \right\}} \right) \Rightarrow y' = \frac{4}{{{{\left( {x + 3} \right)}^2}}} > 0,\,\,\forall x \in D\)
\(y = {x^4},\,\,\left( {D = R} \right) \Rightarrow y' = 4{x^3}\), hàm số đạt cực tiểu tại \(x = 0\)
\(y = {x^2} + 2x + 2,\,\,\left( {D = R} \right) \Rightarrow y' = 2x + 2\), hàm số đạt cực tiểu tại \(x = - 1\)
\(y = - {x^3} + x,\,\,\left( {D = R} \right) \Rightarrow y' = - 3{x^2} + 1\), hàm số đạt cực tiểu tại \(x = - \frac{1}{{\sqrt 3 }}\), hàm số đạt cực đại tại \(x = \frac{1}{{\sqrt 3 }}\)
= \left( {0;3} \right)\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
D. \(x = 9\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
D. \(\left( { - \infty ;1} \right)\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
D. \(y = - {x^3} + x\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.