Câu hỏi:

25/02/2023 223

Cho hàm số \(y = m{x^4} + (m + 1){x^2} + {m^2} - 5.\)Tìm \(m\) để hàm số có ba điểm cực trị.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Lời giải

Chọn C

Hàm số \(y = m{x^4} + (m + 1){x^2} + {m^2} - 5\) có tập xác định \(D = \mathbb{R}\,.\)

\(y' = 4m{x^3} + 2(m + 1)x = 2x(2m{x^2} + m + 1)\).

Hàm số \(y = m{x^4} + (m + 1){x^2} + {m^2} - 5\) có ba điểm cực trị khi và chỉ khi phương trình \(y' = 0\) có ba nghiệm phân biệt và \(y'\) đổi dấu khi đi qua ba nghiệm đó.

Ta có \(y' = 0 \Leftrightarrow \left[ \begin{array}{l}x = 0\\2m{x^2} + m + 1 = 0\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = 0\\2m{x^2} = - (m + 1)\end{array} \right.\).

\(y' = 0\) có ba nghiệm phân biệt \( \Leftrightarrow - \frac{{m + 1}}{{2m}} > 0 \Leftrightarrow - 1 < m < 0\) (khi đó \(y'\) đổi dấu khi đi qua ba nghiệm).

Vậy\[\,\,m \in \left( { - 1;0} \right)\] nên ta chọn phương án

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Lời giải

Lời giải

Chọn C

Đồ thị hàm số có đường tiệm cận đứng nằm bên phải \(Oy\)và đường tiệm cận ngang nằm bên trên \(Ox\)nên \(\left\{ \begin{array}{l} - \frac{d}{c} > 0\\\frac{a}{c} > 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}cd < 0{\rm{ }}(1)\\ac > 0\end{array} \right. \Leftrightarrow ad < 0\).

Đồ thị hàm số cắt \(Ox\)tại \(\left( { - \frac{b}{a};0} \right)\), cắt \(Oy\)tại \(\left( {0;\frac{b}{d}} \right)\), từ đồ thị hàm số ta có:

\(\left\{ \begin{array}{l} - \frac{b}{a} < 0\\\frac{b}{d} < 0\end{array} \right. \Rightarrow \left\{ \begin{array}{l}ab > 0\\bd < 0{\rm{ }}(2)\end{array} \right.\).

Từ (1) và (2) ta có: \(bc > 0\).

Vậy ta có \(bc > 0,ad < 0\).

Câu 2

Lời giải

Lời giải

Chọn D

Đường cong có dạng của đồ thị hàm số bậc \(4\) trùng phương với hệ số \(a < 0\) nên chỉ có hàm số \(y = - {x^4} + 2{x^2}\) thỏa yêu cầu bài toán.

Phương án nhiễu A, học sinh tự đổi dấu các hệ số nên nhầm dạng đồ thị.

Phương án nhiễu B và C, học sinh nhầm dạng đồ thị hàm số bậc 2 và bậc 3.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP